147
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Treatment with a PPAR-γ Agonist Protects Against Hyperuricemic Nephropathy in a Rat Model

, , , , , , & show all
Pages 2221-2233 | Published online: 08 Jun 2020

References

  • SrivastavaA, KazeAD, McMullanCJ, IsakovaT, WaikarSS. Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis. 2018;71(3):362–370. doi:10.1053/j.ajkd.2017.08.01729132945
  • JohnsonRJ, BakrisGL, BorghiC, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis. 2018;71(6):851–865. doi:10.1053/j.ajkd.2017.12.00929496260
  • OtaniN, OuchiM, HayashiK, JutabhaP, AnzaiN. Roles of organic anion transporters(OATs) in renal proximal tubules and their localization. Anat Sci Int. 2017;92(2):200–206.27614971
  • HuijuanW, XiaoxuC, RuiS, XinghuiL, BeibeiT, JianchunM. Qi-Zhu-Xie-Zhuo-Fang reduces serum uric acid levels and ameliorates renal fibrosis in hyperuricemic nephropathy rats. Biomed Pharmacother. 2017;91:358–365. doi:10.1016/j.biopha.2017.04.03128463799
  • LovisaS, LeBleuVS, TampeB, SugimotoH, VadnagaraK, CarstensJL. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21(9):998–1009. doi:10.1038/nm.390226236991
  • StoneRC, PastarI, OjehN, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365(3):495–506. doi:10.1007/s00441-016-2464-027461257
  • MengXM, TangPM, LiJ, LanHY. TGF-beta/Smad signaling in renal fibrosis. Front Physiol. 2015;6:82. doi:10.3389/fphys.2015.0008225852569
  • RyuES, KimMJ, ShinHS, et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol. 2013;304(5):F471–480. doi:10.1152/ajprenal.00560.201223283992
  • MulaySR, EvanA, AndersHJ. Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant. 2014;29(3):507–514. doi:10.1093/ndt/gft24824163269
  • LiuN, WangL, YangT, et al. EGF receptor inhibition alleviates hyperuricemic nephropathy. J Am Soc Nephrol. 2015;26(11):2716–2729. doi:10.1681/ASN.201408079325788532
  • LefterovaMI, HaakonssonAK, LazarMA, MandrupS. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 2014;25(6):293–302. doi:10.1016/j.tem.2014.04.00124793638
  • WangS, DoughertyEJ, DannerRL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res. 2016;111:76–85. doi:10.1016/j.phrs.2016.02.02827268145
  • KadamL, Gomez-LopezN, MialTN, Kohan-GhadrHR, DrewloS. Rosiglitazone regulates TLR4 and rescues HO-1 and NRF2 expression in myometrial and decidual macrophages in inflammation-induced preterm birth. Reprod Sci (Thousand Oaks, Calif). 2017;24(12):1590–1599. doi:10.1177/1933719117697128
  • GuttingT, WeberCA, WeidnerP, et al. PPARgamma-activation increases intestinal M1 macrophages and mitigates formation of serrated adenomas in mutant KRAS mice. Oncoimmunology. 2018;7(5):e1423168. doi:10.1080/2162402X.2017.142316829721374
  • SarafidisPA, BakrisGL. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int. 2006;70(7):1223–1233. doi:10.1038/sj.ki.500162016883325
  • WangP, LuoML, SongE, et al. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med. 2018;10(462):eaat2039. doi:10.1126/scitranslmed.aat203930305452
  • EddyAA. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl. 2014;4(1):2–8. doi:10.1038/kisup.2014.2
  • MengXM, Nikolic-PatersonDJ, LanHY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–338. doi:10.1038/nrneph.2016.4827108839
  • DingY, KimS, LeeSY, KooJK, WangZ, ChoiME. Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol. 2014;25(12):2835–2846. doi:10.1681/ASN.201310106824854279
  • LanHY. Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci. 2011;7(7):1056–1067. doi:10.7150/ijbs.7.105621927575
  • ZhangY, HuangXR, WeiLH, ChungAC, YuCM, LanHY. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol Ther. 2014;22(5):974–985. doi:10.1038/mt.2014.2524569834
  • MitchellJP, CarmodyRJ. NF-kappaB and the transcriptional control of inflammation. Int Rev Cell Mol Biol. 2018;335:41–84.29305014
  • HuangH, LiuY, DanilukJ, et al. Activation of nuclear factor-kappaB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology. 2013;144(1):202–210. doi:10.1053/j.gastro.2012.09.05923041324
  • MengXM, Nikolic-PatersonDJ, LanHY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014;10(9):493–503. doi:10.1038/nrneph.2014.11424981817
  • LiuN, XuL, ShiY, et al. Pharmacologic targeting ERK1/2 attenuates the development and progression of hyperuricemic nephropathy in rats. Oncotarget. 2017;8(20):33807–33826. doi:10.18632/oncotarget.1699528442634
  • BlackLM, LeverJM, AgarwalA. Renal inflammation and fibrosis: a double-edged sword. J Histochem Cytochem. 2019;67(9):663–681. doi:10.1369/002215541985293231116067
  • WuW, BushKT, NigamSK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7(1):4939. doi:10.1038/s41598-017-04949-228694431
  • LiuY. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–696. doi:10.1038/nrneph.2011.14922009250
  • IsakaY. Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci. 2018;19(9):2532. doi:10.3390/ijms19092532
  • TobaH, LindseyML. Extracellular matrix roles in cardiorenal fibrosis: potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther. 2019;193:99–120. doi:10.1016/j.pharmthera.2018.08.01430149103
  • SunYBY, QuX, CaruanaG, LiJ. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016;92(3):102–107. doi:10.1016/j.diff.2016.05.00827262400
  • ChoiJH, JinSW, ChoiCY, et al. Capsaicin inhibits dimethylnitrosamine-induced hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via peroxisome proliferator-activated receptor gamma activation. J Agric Food Chem. 2017;65(2):317–326. doi:10.1021/acs.jafc.6b0480527991776
  • JiangL, ChenXP, LongYB, et al. The potential signaling pathway between peroxisome proliferator-activated receptor gamma and retinoic acid receptor alpha in renal interstitial fibrosis disease. J Recept Signal Transduct Res. 2015;35(4):258–268. doi:10.3109/10799893.2014.97524925359573
  • LeeYJ, HanHJ. Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3β, Snail1, and β-catenin in renal proximal tubule cells. Am J Physiol Renal Physiol. 2010;298(5):F1263–1275. doi:10.1152/ajprenal.00475.200920015942
  • ChouHC, WenLL, ChangCC, LinCY, JinL, JuanSH. From the cover: l-carnitine via pparγ- and sirt1-dependent mechanisms attenuates epithelial-mesenchymal transition and renal fibrosis caused by perfluorooctanesulfonate. Toxicol Sci. 2017;160(2):217–229. doi:10.1093/toxsci/kfx18328973641
  • JalalDI, ChoncholM, ChenW, TargherG. Uric acid as a target of therapy in CKD. Am J Kidney Dis. 2013;61(1):134–146. doi:10.1053/j.ajkd.2012.07.02123058478
  • SpigaR, MariniMA, MancusoE, et al. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-kappaB signaling pathway in HepG2 cells. Arterioscler Thromb Vasc Biol. 2017;37(6):1241–1249. doi:10.1161/ATVBAHA.117.30912828408375
  • ZhouY, FangL, JiangL, et al. Uric acid induces renal inflammation via activating tubular NF-kappaB signaling pathway. PLoS One. 2012;7(6):e39738. doi:10.1371/journal.pone.003973822761883
  • LiuH, XiongJ, HeT, et al. high uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB signaling pathway. Am J Nephrol. 2017;46(4):333–342. doi:10.1159/00048166829017152
  • ZhuT, ChenZ, ChenG, et al. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPAR-dependent NF-B signaling pathway in vivo and in vitro. Mediators Inflamm. 2019;2019:4927430. doi:10.1155/2019/492743031073274
  • ChoRL, YangCC, TsengHC, HsiaoLD, LinCC, YangCM. Haem oxygenase-1 up-regulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPARγ attenuates LPS-mediated lung inflammation. Br J Pharmacol. 2018;175(20):3928–3946. doi:10.1111/bph.1446530088830
  • DengJ, XiaY, ZhouQ, et al. Protective effect of rosiglitazone on chronic renal allograft dysfunction in rats. Transpl Immunol. 2019;54:20–28. doi:10.1016/j.trim.2019.01.00230682409
  • BoseB, BadveSV, HiremathSS, et al. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol Dial Transplant. 2014;29(2):406–413. doi:10.1093/ndt/gft37824042021
  • SampsonAL, SingerRF, WaltersGD. Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease. Cochrane Database Syst Rev. 2017;10:Cd009460.29084343
  • BaoY, ZhaoT, WangX, et al. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res. 2009;8(4):1623–1630. doi:10.1021/pr800643w19714868