196
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Pranlukast Antagonizes CD49f and Reduces Stemness in Triple-Negative Breast Cancer Cells

, ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1799-1811 | Published online: 12 May 2020

References

  • StewartB, WildCP World Cancer Report 2014. Lyon, France: International Agency for Research on Cancer; 2014.
  • Population Reference Bureau. 2012 World Population Data Sheet. Population Reference Bureau. ed.. Washington, DC: Population Reference Bureau; 2012.
  • AhmadA. Pathways to breast cancer recurrence. ISRN Oncol. 2013;2013:290568. doi:10.1155/2013/29056823533807
  • Velasco-VelázquezMA, HomsiN, De La FuenteM, PestellRG. Breast cancer stem cells. Int J Biochem Cell Biol. 2012;44(4):573–577. doi:10.1016/j.biocel.2011.12.02022249027
  • JiangFX, Georges-LabouesseE, HarrisonLC. Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan. Mol Med. 2001;7(2):107–114. doi:10.1007/BF0340194411471545
  • NishiuchiR, TakagiJ, HayashiM, et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol. 2006;25(3):189–197. doi:10.1016/j.matbio.2005.12.00116413178
  • BrooksDLP, SchwabLP, KrutilinaR, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26. doi:10.1186/s12943-016-0510-x27001172
  • ShawLM, ChaoC, WewerUM, MercurioAM. Function of the integrin alpha 6 beta 1 in metastatic breast carcinoma cells assessed by expression of a dominant-negative receptor. Cancer Res. 1996;56(5):959–963.8640785
  • WewerUM, ShawLM, AlbrechtsenR, MercurioAM. The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am J Pathol. 1997;151(5):1191–1198.9358743
  • VassilopoulosA, ChisholmC, LahusenT, ZhengH, DengCX. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene. 2014;33(47):5477–5482. doi:10.1038/onc.2013.51624317509
  • YuK-R, YangS-R, JungJ-W, et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells. 2012;30(5):876–887. doi:10.1002/stem.105222311737
  • GoelHL, PursellB, ChangC, et al. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5(4):488–508. doi:10.1002/emmm.20120207823436775
  • ToK, FotovatiA, ReipasKM, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res. 2010;70(7):2840–2851. doi:10.1158/0008-5472.CAN-09-315520332234
  • GoelHL, GritskoT, PursellB, et al. Regulated splicing of the α6 integrin cytoplasmic domain determines the fate of breast cancer stem cells. Cell Rep. 2014;7(3):747–761. doi:10.1016/j.celrep.2014.03.05924767994
  • DontuG, AbdallahWM, FoleyJM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–1270. doi:10.1101/gad.106180312756227
  • PeceS, TosoniD, ConfalonieriS, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140(1):62–73. doi:10.1016/j.cell.2009.12.00720074520
  • CariatiM, NaderiA, BrownJP, et al. Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer. 2008;122(2):298–304. doi:10.1002/ijc.2310317935134
  • PerdihA, Sollner DolencM. Small molecule antagonists of integrin receptors. CMC. 2010;17(22):2371–2392. doi:10.2174/092986710791698558
  • GoodmanSL, PicardM. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33(7):405–412. doi:10.1016/j.tips.2012.04.00222633092
  • MillardM, OddeS, NeamatiN. Integrin targeted therapeutics. Theranostics. 2011;1:154–188. doi:10.7150/thno/v01p015421547158
  • LeyK, Rivera-NievesJ, SandbornWJ, ShattilS. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov. 2016;15(3):173–183. doi:10.1038/nrd.2015.1026822833
  • IrwinJJ, SterlingT, MysingerMM, BolstadES, ColemanRG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757–1768. doi:10.1021/ci300127722587354
  • SaliA, BlundellTL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi:10.1006/jmbi.1993.16268254673
  • VolkamerA, KuhnD, GrombacherT, RippmannF, RareyM. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(2):360–372. doi:10.1021/ci200454v22148551
  • TrottO, OlsonAJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.2133419499576
  • MorrisGM, HueyR, LindstromW, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi:10.1002/jcc.2125619399780
  • NeudertG, KlebeG. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J Chem Inf Model. 2011;51(10):2731–2745. doi:10.1021/ci200274q21863864
  • Aguirre-AlvaradoC, Segura-CabreraA, Velázquez-QuesadaI, et al. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells. Oncotarget. 2016;7(17):23772–23784. doi:10.18632/oncotarget.818027009862
  • WuK, JiaoX, LiZ, et al. Cell fate determination factor Dachshund reprograms breast cancer stem cell function. J Biol Chem. 2011;286(3):2132–2142. doi:10.1074/jbc.M110.14839520937839
  • HumphriesMJ. Cell adhesion assays. MB. 2001;18(1):57–62. doi:10.1385/MB:18:1:57
  • Velasco-VelázquezMA, Agramonte-HeviaJ, BarreraD, et al. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16-F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett. 2003;198(2):179–186. doi:10.1016/s0304-3835(03)00333-112957356
  • LombardoY, de GiorgioA, CoombesCR, StebbingJ, CastellanoL. Mammosphere formation assay from human breast cancer tissues and cell lines. J Vis Exp. 2015;(97). doi:10.3791/52671
  • SchneiderCA, RasbandWS, EliceiriKW. NIH image to imageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi:10.1038/nmeth.208922930834
  • CaseDA, CheathamTE, DardenT, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–1688. doi:10.1002/jcc.2029016200636
  • ZlenkoDV. Pаcчет коэффициента cамодиффузии tip4p-воды [Diffusion factor calculation for TIP4P model of water]. Biofizika. 2012;57(2):197–204. Article in Russian.22594273
  • PiovesanD, MinerviniG, TosattoSCE. The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res. 2016;44(W1):W367–74. doi:10.1093/nar/gkw31527198219
  • Salomon-FerrerR, CaseDA, WalkerRC. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013;3(2):198–210. doi:10.1002/wcms.1121
  • Velasco-VelázquezM, JiaoX, De La FuenteM, et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–3850. doi:10.1158/0008-5472.CAN-11-391722637726
  • HuY, SmythGK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347(1–2):70–78. doi:10.1016/j.jim.2009.06.00819567251
  • PopolinCP, ReisJPB, BecceneriAB, et al. Cytotoxicity and anti-tumor effects of new ruthenium complexes on triple negative breast cancer cells. PLoS One. 2017;12(9):e0183275. doi:10.1371/journal.pone.018327528898246
  • HuT, ZhouR, ZhaoY, WuG. Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci Rep. 2016;6:33376. doi:10.1038/srep3337627624978
  • BoydMR, PaullKD. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995;34(2):91–109. doi:10.1002/ddr.430340203
  • PlopperGE, DomanicoSZ, CirulliV, KiossesWB, QuarantaV. Migration of breast epithelial cells on Laminin-5: differential role of integrins in normal and transformed cell types. Breast Cancer Res Treat. 1998;51(1):57–69. doi:10.1023/a:10060862181749877029
  • PalS, MoulikS, DuttaA, ChatterjeeA. Extracellular matrix protein laminin induces matrix metalloproteinase-9 in human breast cancer cell line mcf-7. Cancer Microenviron. 2014;7(1–2):71–78. doi:10.1007/s12307-014-0146-624858419
  • TaherianA, LiX, LiuY, HaasTA. Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer. 2011;11:293. doi:10.1186/1471-2407-11-29321752268
  • GahmbergCG, FagerholmSC, NurmiSM, ChavakisT, MarchesanS, GrönholmM. Regulation of integrin activity and signalling. Biochim Biophys Acta. 2009;1790(6):431–444. doi:10.1016/j.bbagen.2009.03.00719289150
  • LaplantineE, MaurerP, VallarL, et al. The integrin β1 subunit cytoplasmic tail forms oligomers: a potential role in β1 integrin clustering. Biol Cell. 2002;94(6):375–387. doi:10.1016/S0248-4900(02)00009-612500944
  • BrinkerhoffCJ, LindermanJJ. Integrin dimerization and ligand organization: key components in integrin clustering for cell adhesion. Tissue Eng. 2005;11(5–6):865–876. doi:10.1089/ten.2005.11.86515998226
  • ArkinMR, TangY, WellsJA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21(9):1102–1114. doi:10.1016/j.chembiol.2014.09.00125237857
  • LiJ, ZhengS, ChenB, ButteAJ, SwamidassSJ, LuZ. A survey of current trends in computational drug repositioning. Brief Bioinformatics. 2016;17(1):2–12. doi:10.1093/bib/bbv02025832646
  • WürthR, ThellungS, BajettoA, MazzantiM, FlorioT, BarbieriF. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today. 2016;21(1):190–199. doi:10.1016/j.drudis.2015.09.01726456577
  • SmartCE, MorrisonBJ, SaunusJM, et al. In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One. 2013;8(6):e64388. doi:10.1371/journal.pone.006438823750209
  • YousefniaS, GhaediK, Seyed ForootanF, Nasr EsfahaniMH. Characterization of the stemness potency of mammospheres isolated from the breast cancer cell lines. Tumour Biol. 2019;41(8):1010428319869101. doi:10.1177/101042831986910131423948
  • ZhangX, LiF, ZhengY, et al. Propofol reduced mammosphere formation of breast cancer stem cells via PD-L1/nanog in vitro. Oxid Med Cell Longev. 2019;2019:9078209. doi:10.1155/2019/907820930906504
  • XiongJP, StehleT, DiefenbachB, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 2001;294(5541):339–345. doi:10.1126/science.106453511546839
  • GolubovskayaVM, YlaganL, MillerA, et al. High focal adhesion kinase expression in breast carcinoma is associated with lymphovascular invasion and triple-negative phenotype. BMC Cancer. 2014;14:769. doi:10.1186/1471-2407-14-76925326692
  • LuoM, FanH, NagyT, et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res. 2009;69(2):466–474. doi:10.1158/0008-5472.CAN-08-307819147559
  • KolevVN, TamWF, WrightQG, et al. Inhibition of FAK kinase activity preferentially targets cancer stem cells. Oncotarget. 2017;8(31):51733–51747. doi:10.18632/oncotarget.1851728881682
  • SchallerMD, HildebrandJD, ShannonJD, FoxJW, VinesRR, ParsonsJT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14(3):1680–1688. doi:10.1128/mcb.14.3.16807509446
  • López-KnowlesE, O’TooleSA, McNeilCM, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126(5):1121–1131. doi:10.1002/ijc.2483119685490
  • HardtO, WildS, OerleckeI, et al. Highly sensitive profiling of CD44+/CD24- breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway. Cancer Lett. 2012;325(2):165–174. doi:10.1016/j.canlet.2012.06.01022771536
  • KimH, LinQ, GlazerPM, YunZ. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res. 2018;20(1):16. doi:10.1186/s13058-018-0944-829510720
  • GuptaPB, OnderTT, JiangG, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–659. doi:10.1016/j.cell.2009.06.03419682730
  • WeinaK, UtikalJ. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med. 2014;3:19. doi:10.1186/2001-1326-3-1925114775
  • LiuK, XieF, GaoA, et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer. 2017;16(1):62. doi:10.1186/s12943-017-0632-928288641
  • MukherjeeP, GuptaA, ChattopadhyayD, ChatterjiU. Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells. Sci Rep. 2017;7(1):9170. doi:10.1038/s41598-017-08971-228835684
  • ChanmeeT, OntongP, KimataK, ItanoN. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front Oncol. 2015;5:180. doi:10.3389/fonc.2015.0018026322272
  • StolzenburgS, RotsMG, BeltranAS, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40(14):6725–6740. doi:10.1093/nar/gks36022561374
  • PivaM, DomeniciG, IriondoO, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 2014;6(1):66–79. doi:10.1002/emmm.20130341124178749
  • XuH, TianY, YuanX, et al. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. Onco Targets Ther. 2016;9:431–444. doi:10.2147/OTT.S9719226855592
  • LiuP, KumarIS, BrownS, et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer. 2013;109(7):1876–1885. doi:10.1038/bjc.2013.53424008666
  • MatsuseH, KohnoS. Leukotriene receptor antagonists pranlukast and montelukast for treating asthma. Expert Opin Pharmacother. 2014;15(3):353–363. doi:10.1517/14656566.2014.87224124350802
  • NozakiM, YoshikawaM, IshitaniK, et al. Cysteinyl leukotriene receptor antagonists inhibit tumor metastasis by inhibiting capillary permeability. Keio J Med. 2010;59(1):10–18. doi:10.2302/kjm.59.1020375653
  • SunT, WuZ, LuoM, LinD, GuoC. Pranlukast, a novel binding ligand of human Raf1 kinase inhibitory protein. Biotechnol Lett. 2016;38(8):1375–1380. doi:10.1007/s10529-016-2117-027146207
  • Escara-WilkeJ, YeungK, KellerET. Raf kinase inhibitor protein (RKIP) in cancer. Cancer Metastasis Rev. 2012;31(3–4):615–620. doi:10.1007/s10555-012-9365-922684368