150
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Nimodipine Improves Cognitive Impairment After Subarachnoid Hemorrhage in Rats Through IncRNA NEAT1/miR-27a/MAPT Axis

, , , , , & show all
Pages 2295-2306 | Published online: 10 Jun 2020

References

  • LublinskyS, MajorS, KolaV, et al. Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. EBioMedicine. 2019;43:460–472.31162113
  • ZhengZV, LamPK, PoonWS, WongKCG. The time course of cognitive deficits in experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2020;127:121–125.31407072
  • GeraghtyJR, DavisJL, TestaiFD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome. Neurocrit Care. 2019;31(2):373–389. doi:10.1007/s12028-019-00710-x31012056
  • SunC, EnkhjargalB, ReisC, et al. Osteopontin-enhanced autophagy attenuates early brain injury via FAK-ERK pathway and improves long-term outcome after subarachnoid hemorrhage in rats. Cells. 2019;8(9):980. doi:10.3390/cells8090980
  • EaglesME, TsoMK, MacdonaldRL. Cognitive impairment, functional outcome, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019;124:e558–e562. doi:10.1016/j.wneu.2018.12.152
  • Haug NordenmarkT, KaricT, SortebergW, SortebergA. Predictors of cognitive function in the acute phase after aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien). 2019;161(1):177–184. doi:10.1007/s00701-018-3760-030535853
  • SuJ, TongzhouE, GuoQ, LeiY, GuY. Memory deficits after aneurysmal subarachnoid hemorrhage: a functional magnetic resonance imaging study. World Neurosurg. 2018;111:e500–e506. doi:10.1016/j.wneu.2017.12.10229288107
  • MullerAH, PovlsenGK, Bang-BerthelsenCH, et al. Regulation of microRNAs miR-30a and miR-143 in cerebral vasculature after experimental subarachnoid hemorrhage in rats. BMC Genomics. 2015;16(1):119. doi:10.1186/s12864-015-1341-725766280
  • StylliSS, AdamidesAA, KoldejRM, et al. miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126(4):1131–1139. doi:10.3171/2016.1.JNS15145427128592
  • ZhaoH, LiY, ChenL, et al. HucMSCs-derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF. Neuroscience. 2019;417:11–23. doi:10.1016/j.neuroscience.2019.07.05131400488
  • YangS, TangW, HeY, WenL, SunB, LiS. Long non-coding RNA and microRNA-675/let-7a mediates the protective effect of melatonin against early brain injury after subarachnoid hemorrhage via targeting TP53 and neural growth factor. Cell Death Dis. 2018;9(2):99. doi:10.1038/s41419-017-0155-829367587
  • XieSP, ZhouF, LiJ, DuanSJ. NEAT1 regulates MPP(+)-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci Lett. 2019;708:134340. doi:10.1016/j.neulet.2019.13434031228597
  • WangX. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. J Cell Biochem. 2018;119(2):1567–1574. doi:10.1002/jcb.2631728771824
  • MullerV, Oliveira-FerrerL, SteinbachB, PantelK, SchwarzenbachH. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol. 2019;13(5):1137–1149. doi:10.1002/1878-0261.1247230803129
  • ButlerAA, JohnstonDR, KaurS, LubinFD. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal. 2019;12(588):eaaw9277. doi:10.1126/scisignal.aaw927731266852
  • LuoY, YangJ, ZhangC, et al. Up-regulation of miR-27a promotes monocyte-mediated inflammatory responses in Kawasaki disease by inhibiting function of B10 cells. J Leukoc Biol. 2019;107(1):133–44.31583766
  • ZhangJ, QiuW, MaJ, et al. miR-27a-5p attenuates hypoxia-induced rat cardiomyocyte injury by inhibiting Atg7. Int J Mol Sci. 2019;20(10):2418.
  • LjepojaB, Garcia-RomanJ, SommerAK, WagnerE, RoidlA. MiRNA-27a sensitizes breast cancer cells to treatment with selective estrogen receptor modulators. Breast. 2019;43:31–38. doi:10.1016/j.breast.2018.10.00730415143
  • MaghsudluM, Farashahi YazdE, AmirianiT. Increased expression of MiR-27a and MiR-24-2 in esophageal squamous cell carcinoma. J Gastrointest Cancer. 2019;51(1):227–33.
  • TodenS, OkugawaY, BuhrmannC, et al. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev Res (Phila). 2015;8(5):431–443. doi:10.1158/1940-6207.CAPR-14-035425712055
  • FangX, HuW, ZhouL, et al. Downregulation of miR-27a-3p may increase hematoma volume in rats with intracerebral hemorrhage. Int J Clin Exp Med. 2018;11(10):10631–10638.
  • XiT, JinF, ZhuY, et al. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11. J Biol Chem. 2018;293(52):20041–20050. doi:10.1074/jbc.RA118.00185830337368
  • SchiefeckerAJ, DietmannA, BeerR, et al. Neuroinflammation is associated with brain extracellular TAU-protein release after spontaneous subarachnoid hemorrhage. Curr Drug Targets. 2017;18(12):1408–1416. doi:10.2174/138945011766616020111180426844567
  • HelbokR, SchiefeckerA, DelazerM, et al. Cerebral tau is elevated after aneurysmal subarachnoid haemorrhage and associated with brain metabolic distress and poor functional and cognitive long-term outcome. J Neurol Neurosurg Psychiatry. 2015;86(1):79–86. doi:10.1136/jnnp-2013-30732624741064
  • ZanierER, ZoerleT, FioriniM, et al. Heart-fatty acid-binding and tau proteins relate to brain injury severity and long-term outcome in subarachnoid haemorrhage patients. Br J Anaesth. 2013;111(3):424–432. doi:10.1093/bja/aet14923650253
  • JoswigH, KorteW, FruhS, et al. Neurodegenerative cerebrospinal fluid biomarkers tau and amyloid beta predict functional, quality of life, and neuropsychological outcomes after aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 2018;41(2):605–614. doi:10.1007/s10143-017-0900-628890998
  • HatsutaH, TakaoM, NogamiA, et al. Tau and TDP-43 accumulation of the basal nucleus of Meynert in individuals with cerebral lobar infarcts or hemorrhage. Acta Neuropathol Commun. 2019;7(1):49. doi:10.1186/s40478-019-0700-z30922392