123
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Cationic/Anionic Polyelectrolyte (PLL/PGA) Coated Vesicular Phospholipid Gels (VPGs) Loaded with Cytarabine for Sustained Release and Anti-glioma Effects

, , & ORCID Icon
Pages 1825-1836 | Published online: 12 May 2020

References

  • LapointeS, PerryA, ButowskiNA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–446. doi:10.1016/S0140-6736(18)30990-530060998
  • ChoC-F. The blood-brain barrier: brain cancer therapy hits a wall. Oncol Times. 2018;40(2):1,6–7. doi:10.1097/01.COT.0000530114.97923.aa
  • HasegawaY, IuchiT, SakaidaT, et al. The influence of carmustine wafer implantation on tumor bed cysts and peritumoral brain edema. J Clin Neurosci. 2016;31:67–71. doi:10.1016/j.jocn.2015.12.03327430412
  • ManasponC, NasongklaN, ChaimongkolnukulK, et al. Injectable SN-38-loaded polymeric depots for cancer chemotherapy of glioblastoma multiforme. Pharm Res. 2016;33(12):1–13. doi:10.1007/s11095-016-2011-426334501
  • BrandlM. Vesicular phospholipid gels: a technology platform. J Liposome Res. 2007;17(1):15–26. doi:10.1080/0898210060118649017454400
  • GüthleinF, BurgerAM, BrandlM, et al. Pharmacokinetics and antitumor activity of vincristine entrapped in vesicular phospholipid gels. Anticancer Drugs. 2002;13(8):797–805. doi:10.1097/00001813-200209000-0000312394263
  • MoogR, BurgerAM, BrandlM, et al. Change in pharmacokinetic and pharmacodynamic behavior of gemcitabine in human tumor xenografts upon entrapment in vesicular phospholipid gels. Cancer Chemother Pharmacol. 2002;49(5):356–366. doi:10.1016/S0140-6736(18)30990-511976829
  • QiN, CaiC, ZhangW, et al. Sustained delivery of cytarabine-loaded vesicular phospholipid gels for treatment of xenografted glioma. Int J Pharm. 2014;472(1–2):48–55. doi:10.1016/j.ijpharm.2014.06.00524914829
  • QiN, TangX, LinX, et al. Sterilization stability of vesicular phospholipid gels loaded with cytarabine for brain implant. Int J Pharm. 2012;427(2):234–241. doi:10.1016/j.ijpharm.2012.02.00822349049
  • PötzingerY, RabelM, AhremH, et al. Polyelectrolyte layer assembly of bacterial nanocellulose whiskers with plasmid DNA as biocompatible non-viral gene delivery system. Cellulose. 2018;25(3):1–22. doi:10.1007/s10570-018-1664-z
  • Veleva-KostadinovaE, DimitrovI, Toncheva-MonchevaN, et al. Nanoparticulate polyelectrolyte complexes of thermally sensitive poly(L-lysine)-based copolymers and DNA. Eur Polym J. 2018;102:219–230. doi:10.1016/j.eurpolymj.2018.03.028
  • ChenY, LiJ, OupickýD. Conjugate polyplexes with anti-invasive properties and improved siRNA delivery in vivo. Bioconjug Chem. 2018;29(2):296–305. doi:10.1021/acs.bioconjchem.7b0062229338191
  • HusseinWM, CheongYS, LiuC, et al. Peptide-based targeted polymeric nanoparticles for siRNA delivery. Nanotechnology. 2019;30(41):415604. doi:10.1088/1361-6528/ab313d31295734
  • YoshizakiY, YubaE, SakaguchiN, et al. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials. 2014;35(28):8186–8196. doi:10.1016/j.biomaterials.2014.05.07724969637
  • GeL, MöhwaldH, LiJ. Phospholipid liposomes stabilized by the coverage of polyelectrolyte. Colloids Surf A Physicochem Eng Asp. 2003;221(1–3):49–53. doi:10.1016/S0927-7757(03)00106-7
  • YaroslavovA, EfimovaA, LobyshevV, et al. Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. Biochim Biophys Acta Biomembr. 2002;1560(1–2):14–24. doi:10.1016/S0005-2736(01)00453-9
  • RanaldiG, MariglianoI, VespignaniI,  et al. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J Nutr Biochem. 2002;13(3):157–167. doi:10.1016/S0955-2863(01)00208-X11893480
  • YaroslavovA, KuchenkovaOY, OkunevaI, et al. Effect of polylysine on transformations and permeability of negative vesicular membranes. Biochim Biophys Acta Biomembr. 2003;1611(1–2):44–54. doi:10.1016/S0005-2736(02)00701-0
  • ShenW-C, RyserH. Poly (L-lysine) has different membrane transport and drug-carrier properties when complexed with heparin. Proc Natl Acad Sci U S A. 1981;78(12):7589–7593. doi:10.1073/pnas.78.12.75896950400
  • KurosakiT, KitaharaT, FumotoS, et al. Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems. Biomaterials. 2009;30(14):2846–2853. doi:10.1016/j.biomaterials.2009.01.05519232715
  • AuzenneE, DonatoNJ, LiC, et al. Superior therapeutic profile of poly-L-glutamic acid-paclitaxel copolymer compared with taxol in xenogeneic compartmental models of human ovarian carcinoma. Clin Cancer Res. 2002;8(2):573–581. doi:10.1093/carcin/23.2.373-A11839679
  • ManochaB, MargaritisA. Production and characterization of γ-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol. 2008;28(2):83–99. doi:10.1080/0738855080210748318568849
  • QiN, TangB, LiuG, LiangX. Poly (γ-glutamic acid)-coated lipoplexes loaded with doxorubicin for enhancing the antitumor activity against liver tumors. Nanoscale Res Lett. 2017;12(1):361. doi:10.1186/s11671-017-2081-128532126
  • MassingU, CickoS, ZiroliV. Dual asymmetric centrifugation (DAC)–a new technique for liposome preparation. J Control Release. 2008;125(1):16–24. doi:10.1016/j.jconrel.2007.09.01018023907
  • ZhaoP, WangH, YuM, et al. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2012;81(2):248–256. doi:10.1016/j.ejpb.2012.03.00422446630
  • SennatoS, BordiF, CamettiC, et al. Charge patch attraction and reentrant condensation in DNA–liposome complexes. Biochim Biophys Acta Biomembr. 2005;1714(1):11–24. doi:10.1016/j.bbamem.2005.06.004
  • VolodkinD, BallV, SchaafP, et al. Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation. Biochim Biophys Acta Biomembr. 2007;1768(2):280–290. doi:10.1016/j.bbamem.2006.09.015
  • Dragicevic-CuricN, GräfeS, GitterB, et al. Surface charged temoporfin-loaded flexible vesicles: in vitro skin penetration studies and stability. Int J Pharm. 2010;384:100–108. doi:10.1016/j.ijpharm.2009.10.00619819321
  • TardiC, DrechslerM, BauerKH, et al. Steam sterilisation of vesicular phospholipid gels. Int J Pharm. 2001;217(1–2):161–172. doi:10.1016/S0378-5173(01)00605-611292552
  • TardiC, BrandlM, SchubertR. Erosion and controlled release properties of semisolid vesicular phospholipid dispersions. J Control Release. 1998;55(2–3):261–270. doi:10.1016/s0168-3659(98)00058-39795078
  • YaroslavovA, KiseliovaE, UdalykhOY, et al. Integrity of mixed liposomes contacting a polycation depends on the negatively charged lipid content. Langmuir. 1998;14(18):5160–5163. doi:10.1021/la970510f
  • VolodkinD, MohwaldH, VoegelJ-C, et al. Coating of negatively charged liposomes by polylysine: drug release study. J Control Release. 2007;117(1):111–120. doi:10.1016/j.jconrel.2006.10.02117169458
  • YangR, ShimW-S, CuiF-D, et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm. 2009;371(1–2):142–147. doi:10.1016/j.ijpharm.2008.12.00719118614
  • WangC, FengM, DengJ, et al. Poly (α-glutamic acid) combined with polycation as serum-resistant carriers for gene delivery. Int J Pharm. 2010;398(1–2):237–245. doi:10.1016/j.ijpharm.2010.07.04820678564
  • SanoK, IwamiyaY, KurosakiT, et al. Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release. 2014;194:310–315. doi:10.1016/j.jconrel.2014.08.02525238958
  • KurosakiT, KitaharaT, KawakamiS, et al. γ-Polyglutamic acid-coated vectors for effective and safe gene therapy. J Control Release. 2010;142(3):404–410. doi:10.1016/j.jconrel.2009.11.01019931327