147
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis

, , , , , , , , & show all
Pages 2091-2100 | Published online: 27 May 2020

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • ChangCS, LeeK, YangY-H, LinM-T, HsuC-N. Estimation of CML incidence: disagreement between national cancer registry and health claims data system in Taiwan. Leuk Res. 2011;35(5):e53–e54. doi:10.1016/j.leukres.2010.12.03421255835
  • WarburgO. On the origin of cancer cells. Science. 1956;123(3191):309–314. doi:10.1126/science.123.3191.30913298683
  • RajendranJG, MankoffDA, O’SullivanF, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10(7):2245–2252. doi:10.1158/1078-0432.CCR-0688-315073099
  • Vander HeidenMG, CantleyLC, ThompsonCB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033. doi:10.1126/science.116080919460998
  • Martinez-OutschoornUE, Peiris-PagesM, PestellRG, SotgiaF, LisantiMP. Erratum: cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(2):113. doi:10.1038/nrclinonc.2017.1
  • ZhangD, TangZ, HuangH, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–580. doi:10.1038/s41586-019-1678-131645732
  • PajakB, SiwiakE, SoltykaM, et al. 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21(1):234. doi:10.3390/ijms21010234
  • WangQ, LiangB, ShirwanyNA, ZouMH. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One. 2011;6(2):e17234. doi:10.1371/journal.pone.001723421386904
  • GerogianniI, PitarakiE, JagirdarRM, et al. 2-Deoxy-glucose enhances the effect of cisplatin and pemetrexed in reducing malignant pleural mesothelioma cell proliferation but not spheroid growth. Anticancer Res. 2019;39(7):3809–3814. doi:10.21873/anticanres.1353031262908
  • LuoW, SemenzaGL. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012;23(11):560–566. doi:10.1016/j.tem.2012.06.01022824010
  • ChristofkHR, Vander HeidenMG, HarrisMH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–233. doi:10.1038/nature0673418337823
  • AminS, YangP, LiZ. Pyruvate kinase M2: a multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer. 2019;1871(2):331–341. doi:10.1016/j.bbcan.2019.02.00330826427
  • DengD, XuC, SunP, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510(7503):121–125. doi:10.1038/nature1330624847886
  • CantorJR, SabatiniDM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–898. doi:10.1158/2159-8290.CD-12-034523009760
  • KimI, KwonD, LeeD, LeeG, YoonDS. Permselective glucose sensing with GLUT1-rich cancer cell membranes. Biosens Bioelectron. 2019;135:82–87. doi:10.1016/j.bios.2019.04.00731004924
  • LiuYX, FengJY, SunMM, et al. Aspirin inhibits the proliferation of hepatoma cells through controlling GLUT1-mediated glucose metabolism. Acta Pharmacol Sin. 2019;40(1):122–132. doi:10.1038/s41401-018-0014-x29925918
  • TuY. Artemisinin-A gift from traditional Chinese medicine to the world (Nobel lecture). Angew Chem Int Ed Engl. 2016;55(35):10210–10226. doi:10.1002/anie.20160196727488942
  • WangJ, XuC, LiaoFL, JiangT, KrishnaS, TuY. A temporizing solution to “artemisinin resistance”. N Engl J Med. 2019;380(22):2087–2089. doi:10.1056/NEJMp190123331018065
  • WongYK, XuC, KaleshKA, et al. Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. Med Res Rev. 2017;37(6):1492–1517. doi:10.1002/med.2144628643446
  • HuangL, LuoY, SunX, JuH, TianJ, YuBY. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death. Biosens Bioelectron. 2017;92:724–732. doi:10.1016/j.bios.2016.10.00427825878
  • LinR, ZhangZ, ChenL, et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 2016;381(1):165–175. doi:10.1016/j.canlet.2016.07.03327477901
  • ChenX, WongYK, LimTK, et al. Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway. Molecules. 2017;22(8):1272. doi:10.3390/molecules22081272
  • ChenSS, HuW, WangZ, LouXE, ZhouHJ. p8 attenuates the apoptosis induced by dihydroartemisinin in cancer cells through promoting autophagy. Cancer Biol Ther. 2015;16(5):770–779. doi:10.1080/15384047.2015.102647725891535
  • DongJ, ChenY, YangW, ZhangX, LiL. Antitumor and anti-angiogenic effects of artemisinin on breast tumor xenografts in nude mice. Res Vet Sci. 2020;129:66–69. doi:10.1016/j.rvsc.2020.01.00531945670
  • LiY, ZhouX, LiuJ, YuanX, HeQ. Therapeutic potentials and mechanisms of artemisinin and its derivatives for tumorigenesis and metastasis. Anticancer Agents Med Chem. 2020;20. doi:10.2174/1871520620666200120100252
  • LiYH, LiXF, LiuJT, et al. PKM2, a potential target for regulating cancer. Gene. 2018;668:48–53. doi:10.1016/j.gene.2018.05.03829775756
  • Palsson-McDermottEM, O’NeillLA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35(11):965–973. doi:10.1002/bies.20130008424115022
  • YeungSJ, PanJ, LeeMH. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell Mol Life Sci. 2008;65(24):3981–3999. doi:10.1007/s00018-008-8224-x18766298
  • MathupalaSP, RempelA, PedersenPL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr. 1997;29(4):339–343. doi:10.1023/A:10224946136139387094
  • SutendraG, MichelakisED. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol. 2013;3:1–11. doi:10.3389/fonc.2013.0003823373009
  • FantinVR, St-PierreJ, LederP. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–434. doi:10.1016/j.ccr.2006.04.02316766262
  • TamadaM, SuematsuM, SayaH. Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res. 2012;18(20):5554–5561. doi:10.1158/1078-0432.CCR-12-085923071357
  • MazurekS, BoschekCB, HugoF, EigenbrodtE. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15(4):300–308. doi:10.1016/j.semcancer.2005.04.00915908230
  • AnastasiouD, PoulogiannisG, AsaraJM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278–1283. doi:10.1126/science.121148522052977
  • HsuMC, HungWC. Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 2018;17(1):35. doi:10.1186/s12943-018-0791-329455645
  • ZhangX, ChenB, WuJ, et al. Aspirin enhances the protection of Hsp90 from heat-stressed injury in cardiac microvascular endothelial cells through PI3K-Akt and PKM2 pathways. Cells. 2020;9(1):243. doi:10.3390/cells9010243
  • LiZZ, WangF, LiuS, LiH, WangY. Ablation of PKM2 ameliorated ER stress-induced apoptosis and associated inflammation response in IL-1beta-treated chondrocytes via blocking Rspo2-mediated Wnt/beta-catenin signaling. J Cell Biochem. 2020.
  • FoxJM, MoynihanJR, MottBT, et al. Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs. Oncotarget. 2016;7(6):7268–7279. doi:10.18632/oncotarget.689626771236
  • LaiH, SinghNP. Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 1995;91(1):41–46. doi:10.1016/0304-3835(94)03716-V7750093
  • LiS, HuangP, GanJ, et al. Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2. Eur J Pharmacol. 2019;854:232–239. doi:10.1016/j.ejphar.2019.04.01831004604
  • GrundkerC, WokounU, HellriegelM, EmonsG. Inhibition of aerobic glycolysis enhances the anti-tumor efficacy of Zoptarelin Doxorubicin in triple-negative breast cancer cells. J Obstet Gynaecol Res. 2019;45(7):1334–1342. doi:10.1111/jog.1398031016845