81
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Efficacy of Sub-Tenon Micro-Perfusion of Cyclophosphamide in Rabbits with Severe Ocular Inflammation

, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 3407-3416 | Published online: 20 Aug 2020

References

  • DickAD, TundiaN, SorgR, et al. Risk of ocular complications in patients with noninfectious intermediate uveitis, posterior uveitis, or panuveitis. Ophthalmology. 2016;123(3):655–662. doi:10.1016/j.ophtha.2015.10.02826712559
  • ForresterJV, KuffovaL, DickAD. Autoimmunity, autoinflammation, and infection in uveitis. Am J Ophthalmol. 2018;189:77–85. doi:10.1016/j.ajo.2018.02.01929505775
  • WillermainF, RosenbaumJT, BodaghiB, et al. Interplay between innate and adaptive immunity in the development of non-infectious uveitis. Prog Retin Eye Res. 2012;31(2):182–194. doi:10.1016/j.preteyeres.2011.11.00422120610
  • LeeRW, NicholsonLB, SenHN, et al. Autoimmune and autoinflammatory mechanisms in uveitis. Semin Immunopathol. 2014;36(5):581–594. doi:10.1007/s00281-014-0433-924858699
  • RosenbaumJT, BodaghiB, CoutoC, et al. New observations and emerging ideas in diagnosis and management of non-infectious uveitis: a review. Semin Arthritis Rheum. 2019;49(3):438–445. doi:10.1016/j.semarthrit.2019.06.00431301816
  • JabsDA. Immunosuppression for the uveitides. Ophthalmology. 2018;125(2):193–202. doi:10.1016/j.ophtha.2017.08.00728942074
  • Roda PerezE. [Nitrogen mustard therapy of uveitis of unknown etiology]. Rev Clin Esp. 1952;44(3):173–180. Spanish.14949545
  • PujariSS, KempenJH, NewcombCW, et al. Cyclophosphamide for ocular inflammatory diseases. Ophthalmology. 2010;117(2):356–365. doi:10.1016/j.ophtha.2009.06.06019969366
  • SuelvesAM, ArcinueCA, Gonzalez-MartinJM, KruhJN, FosterCS. Analysis of a novel protocol of pulsed intravenous cyclophosphamide for recalcitrant or severe ocular inflammatory disease. Ophthalmology. 2013;120(6):1201–1209.23601800
  • WakefieldD. Does cyclophosphamide still have a role in the treatment of severe inflammatory eye disease? Ocul Immunol Inflamm. 2014;22(4):306–310. doi:10.3109/09273948.2013.85439524329578
  • DickAD, RosenbaumJT, Al-DhibiHA, et al. Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: fundamentals of care for uveitis (FOCUS) initiative. Ophthalmology. 2018;125(5):757–773. doi:10.1016/j.ophtha.2017.11.01729310963
  • TavakolpourS. Current and future treatment options for pemphigus: is it time to move towards more effective treatments? Int Immunopharmacol. 2017;53:133–142. doi:10.1016/j.intimp.2017.10.02729107213
  • NakanoM, LockhartCM, KellyEJ, RettieAE. Ocular cytochrome P450s and transporters: roles in disease and endobiotic and xenobiotic disposition. Drug Metab Rev. 2014;46(3):247–260. doi:10.3109/03602532.2014.92119024856391
  • SalgueiroA, EgeaMA, EspinaM, VallsO, GarciaML. Stability and ocular tolerance of cyclophosphamide-loaded nanospheres. J Microencapsul. 2004;21(2):213–223. doi:10.1080/0265204031000163786615198432
  • SadakaA, SiskRA, OsherJM, ToygarO, DuncanMK, RiemannCD. Intravitreal methotrexate infusion for proliferative vitreoretinopathy. Clin Ophthalmol. 2016;10:1811–1817. doi:10.2147/OPTH.S11189327698550
  • TaylorSR, BankerA, SchlaenA, et al. Intraocular methotrexate can induce extended remission in some patients in noninfectious uveitis. Retina. 2013;33(10):2149–2154. doi:10.1097/IAE.0b013e31828ac07d23615343
  • TaylorSR, Habot-WilnerZ, PachecoP, LightmanSL. Intraocular methotrexate in the treatment of uveitis and uveitic cystoid macular edema. Ophthalmology. 2009;116(4):797–801. doi:10.1016/j.ophtha.2008.10.03319344827
  • GuptaA, SunJK, SilvaPS. Complications of intravitreous injections in patients with diabetes. Semin Ophthalmol. 2018;33(1):42–50. doi:10.1080/08820538.2017.135381129420143
  • NguyenQD, MerrillPT, ClarkWL, et al. Intravitreal sirolimus for noninfectious uveitis: a phase III sirolimus study assessing double-masked uveitis treatment (SAKURA). Ophthalmology. 2016;123(11):2413–2423. doi:10.1016/j.ophtha.2016.07.02927692526
  • AgbanY, ThakurSS, MugishoOO, RupenthalID. Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today. 2019;24(8):1458–1469. doi:10.1016/j.drudis.2019.03.02330930148
  • GhateD, BrooksW, McCareyBE, EdelhauserHF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48(5):2230–2237. doi:10.1167/iovs.06-095417460284
  • ShenL, YouY, SunS, ChenY, QuJ, ChengL. Intraocular and systemic pharmacokinetics of triamcinolone acetonide after a single 40-mg posterior subtenon application. Ophthalmology. 2010;117(12):2365–2371. doi:10.1016/j.ophtha.2010.03.03320678801
  • RobinsonMR, LeeSS, KimH, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82(3):479–487. doi:10.1016/j.exer.2005.08.00716168412
  • ChanJE, PridgenTA, CsakyKG. Episcleral clearance of sodium fluorescein from a bioerodible sub-tenon’s implant in the rat. Exp Eye Res. 2010;90(4):501–506. doi:10.1016/j.exer.2010.01.00120064508
  • ZhaoL, HuangX, PengM. et al. Sub-Tenon sustained controllable delivery of dexamethasone for treating severe acute experimental uveitis. Ocul Immunol Inflamm;2019; 1–10. doi:10.1080/09273948.2019.1643027
  • ChengCK, BergerAS, PearsonPA, AshtonP, JaffeGJ. Intravitreal sustained-release dexamethasone device in the treatment of experimental uveitis. Invest Ophthalmol Vis Sci. 1995;36:442–453.7843913
  • JaffeGJ, YangCS, WangXC, CousinsSW, GallemoreRP, AshtonP. Intravitreal sustained-release cyclosporine in the treatment of experimental uveitis. Ophthalmology. 1998;105:46–56. doi:10.1016/S0161-6420(98)91176-99442778
  • NussenblattRB, PalestineAG, ChanCC, RobergeF. Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology. 1985;92(4):467–471. doi:10.1016/S0161-6420(85)34001-04000641
  • PapangkornK, PrendergastE, HiguchiJW, BrarB, HiguchiWI. Noninvasive ocular drug delivery system of dexamethasone sodium phosphate in the treatment of experimental uveitis rabbit. J Ocul Pharmacol Ther. 2017;33(10):753–762. doi:10.1089/jop.2017.005329022761
  • InokiT, YamagamiS, SakaiR, IsobeM, TsuruT, KawashimaH. Suppression of experimental autoimmune uveoretinitis by anti-alphabeta TCR monoclonal antibody. Jpn J Ophthalmol. 2002;46:518–524. doi:10.1016/S0021-5155(02)00538-512457910
  • LuoL, YangJ, OhY, et al. Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release. 2019;296:68–80. doi:10.1016/j.jconrel.2019.01.01830660629
  • OkadaAA, WakabayashiT, MorimuraY, et al. Trans-Tenon’s retrobulbar triamcinolone infusion for the treatment of uveitis. Br J Ophthalmol. 2003;87(8):968–971. doi:10.1136/bjo.87.8.96812881336
  • KumarDA, AgarwalA, KarnathiS, PatadiyaR. Anterior segment optical coherence tomography for imaging the sub-Tenon space. Ophthalmic Res. 2013;50(4):231–234. doi:10.1159/00035438124157863
  • LiSK, HaoJ. Transscleral passive and iontophoretic transport: theory and analysis. Expert Opin Drug Deliv. 2018;15(3):283–299. doi:10.1080/17425247.2018.140691829149574
  • BararJ, AghanejadA, FathiM, OmidiY. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts. 2016;6(1):49–67. doi:10.15171/bi.2016.0727340624
  • LiJ, LanB, LiX, SunS, LuP, ChengL. Effect of intraocular pressure (IOP) and choroidal circulation on controlled episcleral drug delivery to retina/vitreous. J Control Release. 2016;243:78–85. doi:10.1016/j.jconrel.2016.10.00127717742
  • ShenJ, LuGW, HughesP. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res. 2018;35(11):217. doi:10.1007/s11095-018-2498-y30255364