234
Views
15
CrossRef citations to date
0
Altmetric
Review

Tezepelumab as an Emerging Therapeutic Option for the Treatment of Severe Asthma: Evidence to Date

ORCID Icon &
Pages 331-338 | Published online: 27 Jan 2021

References

  • ToT, StanojevicS, MooresG, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. 2012;12(1):204. doi:10.1186/1471-2458-12-20422429515
  • BackmanH, JanssonS, StridsmanC, et al. Severe asthma—a population study perspective. Clin Exp Allergy. 2019;49(6):819–828. doi:10.1111/cea.1337830817038
  • BusseWW, HolgateS, KerwinE, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–1302. doi:10.1164/rccm.201212-2318OC24200404
  • Anaptysbio reports top-line data from interim analysis of eclipse phase 2 clinical trial of etokimab in chronic rhinosinusitis with nasal polyps; 2020 Available from: https://www.globenewswire.com/Website. Accessed 913, 2020.
  • PetersMC, MekonnenZK, YuanS, BhaktaNR, WoodruffPG, FahyJV. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol. 2014;133(2):388–394. doi:10.1016/j.jaci.2013.07.03624075231
  • SeysSF, ScheersH, Van den BrandeP, et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir Res. 2017;18(1):39. doi:10.1186/s12931-017-0524-y28231834
  • WenzelSE, SchwartzLB, LangmackEL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–1008. doi:10.1164/ajrccm.160.3.981211010471631
  • MurdochJR, LloydCM. Chronic inflammation and asthma. Mutat Res. 2010;690(1–2):24–39. doi:10.1016/j.mrfmmm.2009.09.00519769993
  • VoehringerD, ReeseTA, HuangX, ShinkaiK, LocksleyRM. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med. 2006;203(6):1435–1446. doi:10.1084/jem.2005244816702603
  • SteinkeJW, BorishL. Th2 cytokines and asthma. interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001;2(2):66–70. doi:10.1186/rr4011686867
  • RabeKF, NairP, BrusselleG, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med. 2018;378(26):2475–2485. doi:10.1056/NEJMoa180409329782224
  • CastroM, CorrenJ, PavordID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):24862496. doi:10.1056/NEJMoa1804092
  • DemehriS, MorimotoM, HoltzmanMJ, KopanR, LiuY-J. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 2009;7(5):e1000067. doi:10.1371/journal.pbio.100006719557146
  • RoanF, BellBD, StoklasekTA, KitajimaM, HanH, ZieglerSF. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol. 2012;91(6):877–886. doi:10.1189/jlb.121162222442496
  • KoolM, WillartMA, van NimwegenM, et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity. 2011;34(4):527–540. doi:10.1016/j.immuni.2011.03.01521474346
  • VarricchiG, PecoraroA, MaroneG, et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front Immunol. 2018;9:1595. doi:10.3389/fimmu.2018.0159530057581
  • RoanF, Obata-NinomiyaK, ZieglerSF. Epithelial cell–derived cytokines: more than just signaling the alarm. J Clin Invest. 2019;129(4):14411451. doi:10.1172/jci124606
  • YingS, O’ConnorB, RatoffJ, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–2798. doi:10.4049/jimmunol.181.4.279018684970
  • YingS, O’ConnorB, RatoffJ, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):81838190. doi:10.4049/jimmunol.174.12.8183
  • ShikotraA, ChoyDF, OhriCM, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. 2012;129(1):104–109. doi:10.1016/j.jaci.2011.08.0321975173
  • WestEE, KashyapM, LeonardWJ. TSLP: a key regulator of asthma pathogenesis. Drug Discov Today Dis Mech. 2012;9(3–4). doi:10.1016/j.ddmec.2012.09.003
  • PhamTH, RenP, ParnesJR, et al. Tezepelumab reduces multiple key inflammatory biomarkers in patients with severe, uncontrolled asthma in the phase 2b PATHWAY study. Am J Respir Crit Care Med. 2019;199.
  • GauvreauGM, O’ByrnePM, BouletL, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–2110. doi:10.1056/NEJMoa140289524846652
  • CorrenJ, ParnesJR, WangL, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–946. doi:10.1056/NEJMoa170406428877011
  • CorrenJ, GarciaE, ParnesJR, et al. Tezepelumab treatment effect on annualized rate of exacerbations by baseline biomarkers in uncontrolled severe asthma patients: phase 2b PATHWAY study. Am J Respir Crit Care Med. 2019;199:199.30211629
  • CorrenJ, ChenS, CallanL, et al. The impact of tezepelumab on hospitalization and emergency department visits in patients with severe uncontrolled asthma: results from the pathway phase 2b trial. Am J Respir Crit Care Med. 2019;199.
  • PhamT, RenP, ParnesJR, GriffithsJM. Tezepelumab reduces multiple key inflammatory biomarkers in patients with severe, uncontrolled asthma in the phase 2b PATHWAY study In: B21. Severe Asthma: Clinical and Mechanistic Studies. American Thoracic Society; 2019:A2677.
  • AmbroseC, ColiceG, SalapaK, ParnesJ, CorrenJ. Effect of tezepelumab on exacerbations in patients with severe, uncontrolled asthma, according to baseline body mass index: results from the phase 2b PATHWAY study. J Allergy Clin Immunol. 2020;145(2):AB25. doi:10.1016/j.jaci.2019.12.804
  • SridharS, ZhaoW, PhamT, et al. Tezepelumab decreases matrix remodeling and inflammatory pathways in patients with asthma. Eur Respir J. 2019;54(suppl63):RCT3785.
  • Menzies-GowA, ColiceG, GriffithsJM, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21(1):266. doi:10.1186/s12931-020-01526-633050934
  • Tezepelumab NAVIGATOR phase III trial met primary endpoint of a statistically significant and clinically meaningful reduction in exacerbations in a broad population of patients with severe asthma; 2020 Available from: https://www.astrazeneca.com/Website. Accessed 127, 2020.
  • Update on SOURCE phase III trial for tezepelumab in patients with severe, oral corticosteroid-dependent asthma. Available from: https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2020/update-on-source-phase-iii-trial-for-tezepelumab-in-patients-with-severe-oral-corticosteroid-dependent-asthma.html. Accessed January 20, 2021.
  • BelEH, WenzelSE, ThompsonPJ, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371(13):11891197. doi:10.1056/NEJMoa1403291