185
Views
11
CrossRef citations to date
0
Altmetric
Original Research

The Protective Effects of Juglanin in Cerebral Ischemia Reduce Blood–Brain Barrier Permeability via Inhibition of VEGF/VEGFR2 Signaling

, , , &
Pages 3165-3175 | Published online: 05 Aug 2020

References

  • VeenithTV, CarterEL, GeeraertsT, et al. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol. 2016;73(5):542–550. doi:10.1001/jamaneurol.2016.009127019039
  • KalariaRN. The role of cerebral ischemia in alzheimer’s disease. Neurobiol Aging. 2000;21(2):321–330. doi:10.1016/S0197-4580(00)00125-110867217
  • FangJ, AldermanMH. Trend of stroke hospitalization, United States, 1988–1997. Stroke. 2001;32(10):2221–2226. doi:10.1161/hs1001.09619311588304
  • KhakuAS, TadiP. Cerebrovascular disease. Stroke. 2020.
  • KhoshnamSE, WinlowW, FarzanehM, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–1186.28417216
  • MeraliZ, HuangK, MikulisD, et al. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One. 2017;12(2):e0171558. doi:10.1371/journal.pone.017155828207745
  • SandovalKE, WittKA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32(2):200–219. doi:10.1016/j.nbd.2008.08.00518790057
  • AbdullahiW, TripathiD, RonaldsonPT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315(3):C343–C356. doi:10.1152/ajpcell.00095.201829949404
  • MărgăritescuOT, PiriciD, MărgăritescuC. VEGF expression in human brain tissue after acute ischemic stroke. Rom J Morphol Embryol. 2011;52(4):1283–1292.22203935
  • WangQ, DengY, HuangL, et al. Hypertonic saline downregulates endothelial cell-derived VEGF expression and reduces blood-brain barrier permeability induced by cerebral ischaemia via the VEGFR2/eNOS pathway. Int J Mol Med. 2019;44(3):1078–1090. doi:10.3892/ijmm.2019.426231524227
  • LiW-L, FraserJL, YuSP, et al. The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice. Exp Brain Res. 2011;214(4):503. doi:10.1007/s00221-011-2849-y21922279
  • ScheffSW, AnsariMA. Natural compounds as a therapeutic intervention following traumatic brain injury: the role of phytochemicals. J Neurotrauma. 2017;34(8):1491–1510. doi:10.1089/neu.2016.471827846772
  • KangYJ, CutlerEG, ChoH. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg. 2018;5(1):35. doi:10.1186/s40580-018-0168-830499047
  • AhmadN, UmarS, AshafaqM, et al. A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma. 2013;250(6):1327–1338. doi:10.1007/s00709-013-0516-923784381
  • AhmadN, AhmadR, NaqviAA, et al. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of cerebral ischemia. Int J Biol Macromol. 2016;91:640–655. doi:10.1016/j.ijbiomac.2016.06.00127264648
  • AhmadN, AhmadR, Abbas NaqviA, et al. The effect of safranal loaded mucoadhesive nanoemulsion on oxidative stress markers in cerebral ischemia. Artif Cells Nanomed Biotechnol. 2017;45(4):775–787. doi:10.1080/21691401.2016.122865927609117
  • AhmadN, Al-SubaiecAM, AhmadR, et al. Brain-targeted glycyrrhizic-acid-loaded surface decorated nanoparticles for treatment of cerebral ischaemia and its toxicity assessment. Artif Cells Nanomed Biotechnol. 2019;47(1):475–490. doi:10.1080/21691401.2018.156145830739499
  • AhmadN, AhmadR, AhmadFJ, et al. Poloxamer-chitosan-based naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J Biol Sci. 2020;27(1):500–517. doi:10.1016/j.sjbs.2019.11.00831889876
  • CatanzaroE, GrecoG, PotenzaL, et al. Natural products to fight cancer: a focus on juglans regia. Toxins. 2018;10(11):469. doi:10.3390/toxins10110469
  • JirásekP, AmslingerS, HeilmannJ. Synthesis of natural and non-natural curcuminoids and their neuroprotective activity against glutamate-induced oxidative stress in HT-22 cells. J Nat Prod. 2014;77(10):2206–2217. doi:10.1021/np500396y25313922
  • ChenL, XiongYQ, XuJ, WangJP, MengZL, HongYQ. Juglanin inhibits lung cancer by regulation of apoptosis, ROS and autophagy induction. Oncotarget. 2017;8(55):93878–93898. doi:10.18632/oncotarget.2131729212196
  • HouGR, ZengK, LanHM, WangQ. Juglanin ameliorates UVB-induced skin carcinogenesis via anti-inflammatory and proapoptotic effects in vivo and invitro. Int J Mol Med. 2018;42(1):41–52. doi:10.3892/ijmm.2018.360129620254
  • ShibuyaM. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–1105. doi:10.1177/194760191142303122866201
  • ZhangFX, XuRS. Juglanin ameliorates LPS-induced neuroinflammation in animal models of parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed Pharmacother. 2018;97:1011–1019. doi:10.1016/j.biopha.2017.08.13229136779
  • PafumiI, FestaM, PapacciF, et al. Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis. Sci Rep. 2017;7(1):1. doi:10.1038/s41598-017-04974-128127051
  • LanX, WangW, LiQ, WangJ. The natural flavonoid pinocembrin: molecular targets and potential therapeutic applications. Mol Neurobiol. 2016;53(3):1794–1801. doi:10.1007/s12035-015-9125-225744566
  • PutteerajM, LimWL, TeohSL, YahayaMF. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr Drug Targets. 2018;19(14):1710–1720. doi:10.2174/138945011966618032612525229577854
  • KashyapD, GargVK, TuliHS, et al. Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules. 2019;9(5):174. doi:10.3390/biom9050174
  • CerezoAB, WinterboneMS, MoyleCW, et al. Molecular structure‐function relationship of dietary polyphenols for inhibiting VEGF‐induced VEGFR‐2 activity. Mol Nutr Food Res. 2015;59(11):2119–2131. doi:10.1002/mnfr.20150040726250940
  • ZhuH, WangZ, XingY, et al. Baicalin reduces the permeability of the blood–brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells. J Ethnopharmacol. 2012;141(2):714–720. doi:10.1016/j.jep.2011.08.06321920425
  • ChenXM, KittsDD. Flavonoid composition of orange peel extract ameliorates alcohol-induced tight junction dysfunction in Caco-2 monolayer. Food Chem Toxicol. 2017;105:398–406. doi:10.1016/j.fct.2017.04.00928412402
  • SchulzkeJD, PloegerS, AmashehM, et al. Epithelial tight junctions in intestinal inflammation. Mol Struct Funct Tight Junction. 2009;1165:294.
  • NagyJA, DvorakAM, DvorakHF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol Mech Dis. 2007;2:251–275. doi:10.1146/annurev.pathol.2.010506.134925