236
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Nano-Graphene Oxide-supported APTES-Spermine, as Gene Delivery System, for Transfection of pEGFP-p53 into Breast Cancer Cell Lines

ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Pages 3087-3097 | Published online: 30 Jul 2020

References

  • PachecoI, BuzeaC, TronV. Towards new therapeutic approaches for malignant melanoma. Expert Rev Mol Med. 2011;13:e33. doi:10.1017/S146239941100202X22044938
  • VogelsteinB, KinzlerKW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789. doi:10.1038/nm108715286780
  • EslaminejadT, Noureddin Nematollahi-MahaniS, AnsariM. Glioblastoma targeted gene therapy based on pEGFP/p53-loaded superparamagnetic iron oxide nanoparticles. Curr Gene Ther. 2017;17(1):59–69. doi:10.2174/156652321766617060511582928578643
  • PanL, LiuJ, ShiJ. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chem Soc Rev. 2018;47(18):6930–6946. doi:10.1039/C8CS00081F30062349
  • AubreyBJ, KellyGL, JanicA, HeroldMJ, StrasserA. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104. doi:10.1038/cdd.2017.16929149101
  • EslaminejadT, Nematollahi-MahaniSN, AnsariM. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles. J Magn Magn Mater. 2016;402:34–43. doi:10.1016/j.jmmm.2015.11.037
  • EslaminejadT, Nematollahi-MahaniSN, AnsariM. Cationic β-cyclodextrin–chitosan conjugates as potential carrier for pmCherry-C1 gene delivery. Mol Biotechnol. 2016;58(4):287–298. doi:10.1007/s12033-016-9927-026961910
  • KumariRM, SharmaN, GuptaN, ChandraR, NimeshS. Synthesis and evolution of polymeric nanoparticles: development of an improved gene delivery system In: Grumezescu AM, editor. Design and Development of New Nanocarriers. Elsevier; 2018:401–438.
  • MiraftabR, KarimiB, BahlakehG, RamezanzadehB. Complementary experimental and quantum mechanics approaches for exploring the mechanical characteristics of epoxy composites loaded with graphene oxide-polyaniline nanofibers. J Ind Eng Chem. 2017;53:348–359. doi:10.1016/j.jiec.2017.05.006
  • SerodreT, OliveiraNA, MiquitaDR, et al. Surface silanization of graphene oxide under mild reaction conditions. J Braz Chem Soc. 2019;30(11):2488–2499.
  • LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.126211846609
  • KimY, ParkH, KimB. Triple shape-memory effect by silanized polyurethane/silane-functionalized graphene oxide nanocomposites bilayer. High Perform Polym. 2015;27(7):886–897. doi:10.1177/0954008314565398
  • HuY, LiF, BaiX, et al. Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem Comm. 2011;47(6):1743–1745. doi:10.1039/C0CC04514D21125081
  • PinelliF, PeraleG, RossiF. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels. 2020;6(1):6. doi:10.3390/gels6010006
  • GiulimondiF, DigiacomoL, PozziD, et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat Commun. 2019;10(1):1–11. doi:10.1038/s41467-019-11642-730602773
  • AlamSN, SharmaN, KumarL. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene. 2017;6(1):1–18. doi:10.4236/graphene.2017.61001
  • GhanemA, Abdel RehimM. Assisted tip sonication approach for graphene synthesis in aqueous dispersion. Biomedicines. 2018;6(2):63. doi:10.3390/biomedicines6020063
  • NováčekM, JankovskýO, LuxaJ, et al. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J Materi Chem A. 2017;5(6):2739–2748. doi:10.1039/C6TA03631G
  • LiuY, LiuZ, WangY, et al. Investigation of the performance of PEG–PEI/ROCK-II-siRNA complexes for alzheimer’s disease in vitro. Brain Res. 2013;1490:43–51. doi:10.1016/j.brainres.2012.10.03923103413
  • MolnarMM, LiddellSC, WadkinsRM. Effects of polyamine binding on the stability of DNA i-motif structures. ACS Omega. 2019;4(5):8967–8973. doi:10.1021/acsomega.9b0078431459985
  • ShenZ-L, XiaY-Q, YangQ-S, TianW-D, ChenK, MaY-Q. Polymer–nucleic acid interactions. Top Curr Chem. 2017;375(2):44. doi:10.1007/s41061-017-0131-x
  • ZhouS, ChenW, ColeJ, ZhuG. Delivery of nucleic acid therapeutics for cancer immunotherapy. Med Drug Discov. 2020;6:100023. doi:10.1016/j.medidd.2020.100023
  • CampbellE, HasanMT, PhoC, CallaghanK, AkkarajuGR, NaumovAV. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci Rep. 2019;9(1):416. doi:10.1038/s41598-018-36617-430674914
  • ChenB, LiuM, ZhangL, HuangJ, YaoJ, ZhangZ. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem. 2011;21(21):7736–7741. doi:10.1039/c1jm10341e
  • YeY, MaoX, XuJ, KongJ, HuX. Functional graphene oxide nanocarriers for drug delivery. Int J Polym Sci. 2019;2019:8453493. doi:10.1155/2019/8453493
  • de Melo-diogoD, CostaEC, AlvesCG, et al. POxylated graphene oxide nanomaterials for combination chemo-phototherapy of breast cancer cells. Eur J Pharm Biopharm. 2018;131:162–169. doi:10.1016/j.ejpb.2018.08.00830134185
  • CuiQ, JhYU, JnWU, et al. P53‐mediated cell cycle arrest and apoptosis through a caspase‐3‐independent, but caspase‐9‐dependent pathway in oridonin‐treated MCF‐7 human breast cancer cells. Acta Pharmacol Sin. 2007;28(7):1057–1066. doi:10.1111/j.1745-7254.2007.00588.x17588343