239
Views
38
CrossRef citations to date
0
Altmetric
Original Research

Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway

, & ORCID Icon
Pages 2461-2471 | Published online: 24 Jun 2020

References

  • LeemansCR, TiwariR, NautaJPJ, WaalI, SnowGB. Regional lymph node involvement and its significance in the development of distant metastases in head and neck carcinoma. Cancer. 1993;71(2):452–456. doi:10.1002/1097-0142(19930115)71:2<452::AID-CNCR2820710228>3.0.CO;2-B8422638
  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.2155130620402
  • WarnakulasuriyaS. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4–5):309–316. doi:10.1016/j.oraloncology.2008.06.00218804401
  • LiangJ, LiangL, OuyangK, LiZ, YiX. MALAT 1 induces tongue cancer cells’ EMT and inhibits apoptosis through Wnt/β‐catenin signaling pathway. J Oral Pathol Med. 2017;46(2):98–105. doi:10.1111/jop.1246627353727
  • AttramadalCG, KumarS, BoysenME, DhakalHP, NeslandJM, BryneM. Tumor budding, EMT and cancer stem cells in T1-2/N0 oral squamous cell carcinomas. Anticancer Res. 2015;35(11):6111–6120.26504037
  • SasahiraT, KiritaT, KuniyasuH. Update of molecular pathobiology in oral cancer: a review. Int J Clin Oncol. 2014;19(3):431–436. doi:10.1007/s10147-014-0684-424664305
  • KumariS, BadanaAK, MallaR. Reactive oxygen species: a key constituent in cancer survival. Biomark Insights. 2018;13:1177271918755391. doi:10.1177/117727191875539129449774
  • LiouG-Y, StorzP. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–496. doi:10.3109/1071576100366755420370557
  • SchumackerPT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–176. doi:10.1016/j.ccr.2006.08.01516959608
  • SullivanLB, ChandelNS. Mitochondrial reactive oxygen species and cancer. Cancer Metabol. 2014;2(1):17. doi:10.1186/2049-3002-2-17
  • ClintonSK. Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev. 1998;56(2):35–51. doi:10.1111/j.1753-4887.1998.tb01691.x9529899
  • GiovannucciE, RimmEB, LiuY, StampferMJ, WillettWC. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst. 2002;94(5):391–398. doi:10.1093/jnci/94.5.39111880478
  • TangFY, ShihCJ, ChengLH, HoHJ, ChenHJ. Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Mol Nutr Food Res. 2008;52(6):646–654. doi:10.1002/mnfr.20070027218537129
  • PalozzaP, SimoneRE, CatalanoA, MeleMC. Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers. 2011;3(2):2333–2357. doi:10.3390/cancers302233324212813
  • GloriaNF, SoaresN, BrandC, OliveiraFL, BorojevicR, TeodoroAJ. Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Res. 2014;34(3):1377–1386.24596385
  • KimMJ, KimH. Anticancer effect of lycopene in gastric carcinogenesis. J Cancer Prev. 2015;20(2):92. doi:10.15430/JCP.2015.20.2.9226151041
  • LuR, DanH, WuR, et al. Lycopene: features and potential significance in the oral cancer and precancerous lesions. J Oral Pathol Med. 2011;40(5):361–368. doi:10.1111/j.1600-0714.2010.00991.x21198870
  • De StefaniE, OreggiaF, BoffettaP, Deneo-PellegriniH, RoncoA, MendilaharsuM. Tomatoes, tomato-rich foods, lycopene and cancer of the upper aerodigestive tract: a case-control in Uruguay. Oral Oncol. 2000;36(1):47–53. doi:10.1016/S1368-8375(99)00050-010889919
  • LivnyO, KaplanI, ReifenR, Polak-CharconS, MadarZ, SchwartzB. Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. J Nutr. 2002;132(12):3754–3759. doi:10.1093/jn/132.12.375412468619
  • Council NR. Guide for the Care and Use of Laboratory Animals. National Academies Press; 2010.
  • TangFY, PaiMH, KuoYH, WangXD. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer. Mol Nutr Food Res. 2012;56(10):1520–1531. doi:10.1002/mnfr.20120009822961879
  • TangF-Y, PaiM-H, WangX-D. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model. J Agric Food Chem. 2011;59(16):9011–9021. doi:10.1021/jf201764421744871
  • HallP, LevisonD, WoodsA, et al. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some, neoplasms. J Pathol. 1990;162(4):285–294. doi:10.1002/path.17116204031981239
  • OnderTT, GuptaPB, ManiSA, YangJ, LanderES, WeinbergRA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–3654. doi:10.1158/0008-5472.CAN-07-293818483246
  • RogersCD, SaxenaA, BronnerME. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. J Cell Biol. 2013;203(5):835–847. doi:10.1083/jcb.20130505024297751
  • PanS-T, QinY, ZhouZ-W, et al. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK-and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des Dev Ther. 2015;9:1601.
  • RamqvistT, DalianisT. An epidemic of oropharyngeal squamous cell carcinoma (OSCC) due to human papillomavirus (HPV) infection and aspects of treatment and prevention. Anticancer Res. 2011;31(5):1515–1519.21617204
  • GalluzziL, SenovillaL, VitaleI, MichelsJ, KroemerG. Molecular mechanism of cisplatin resistance. Oncogene. 2011;31(15):1869–1883. doi:10.1038/onc.2011.38421892204
  • TsaiJY, DillonJK. Chemoprevention in oral cancer In: Improving Outcomes in Oral Cancer. Springer; 2020:13–22.
  • MessadiD, LeAD, TanakaT, Wilder-SmithP. Oral cancer In: Oral Diagnosis. Springer; 2020:99–111.
  • TuckerKL, FlanaganK. Differential cancer risk in latinos: the role of diet In: Advancing the Science of Cancer in Latinos. Springer. 2020:69–77.
  • Obón‐SantacanaM, Luján‐BarrosoL, FreislingH, et al. Consumption of nuts and seeds and pancreatic ductal adenocarcinoma risk in the European prospective investigation into cancer and nutrition. Int J Cancer. 2020;146(1):76–84. doi:10.1002/ijc.3241531107546
  • TokudomeS, NagayaT, OkuyamaH, et al. Japanese versus Mediterranean diets and cancer. Asian Pac J Cancer Prev. 2000;1(1):61–66.12718690
  • Di MascioP, KaiserS, SiesH. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274(2):532–538. doi:10.1016/0003-9861(89)90467-02802626
  • RaoAV, AgarwalS. Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr. 2000;19(5):563–569. doi:10.1080/07315724.2000.1071895311022869
  • GiovannucciE. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst. 1999;91(4):317–331. doi:10.1093/jnci/91.4.31710050865
  • PreedyVR, WatsonRR. Lycopene: Nutritional, Medicinal and Therapeutic Properties. CRC Press; 2019.
  • ChangL, GrahamP, HaoJ, et al. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013;4(10):e875–e875. doi:10.1038/cddis.2013.40724157869
  • GuoR, MengQ, GuoH, et al. TGF-β2 induces epithelial-mesenchymal transition in cultured human lens epithelial cells through activation of the PI3K/Akt/mTOR signaling pathway. Mol Med Rep. 2016;13(2):1105–1110. doi:10.3892/mmr.2015.464526647778
  • ChangL, GrahamP, HaoJ, et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis. 2014;5(10):e1437–e1437. doi:10.1038/cddis.2014.41525275598
  • ZhangD-M, LiuJ-S, DengL-J, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis. 2013;34(6):1331–1342. doi:10.1093/carcin/bgt06023393227
  • MorganTM, KoreckijTD, CoreyE. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 2009;9(2):237–249. doi:10.2174/15680090978758099919275762
  • ZhangY, NgPK-S, KucherlapatiM, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31(6):820–832. e823. doi:10.1016/j.ccell.2017.04.01328528867
  • TewariD, PatniP, BishayeeA, SahAN, BishayeeA Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Paper presented at: Seminars in Cancer Biology2019.
  • NietoMA, HuangRY-J, JacksonRA, ThieryJP. EMT: 2016. Cell. 2016;166(1):21–45. doi:10.1016/j.cell.2016.06.02827368099
  • BrabletzT, KalluriR, NietoMA, WeinbergRA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128. doi:10.1038/nrc.2017.11829326430
  • ThieryJP, AcloqueH, HuangRY, NietoMA. Epithelial-mesenchymal transitions in development and disease. cell. 2009;139(5):871–890. doi:10.1016/j.cell.2009.11.00719945376
  • GravdalK, HalvorsenOJ, HaukaasSA, AkslenLA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13(23):7003–7011. doi:10.1158/1078-0432.CCR-07-126318056176
  • NiemanMT, PrudoffRS, JohnsonKR, WheelockMJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol. 1999;147(3):631–644. doi:10.1083/jcb.147.3.63110545506
  • PontorieroGF, SmithAN, MillerL-AD, RadiceGL, West-MaysJA, LangRA. Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev Biol. 2009;326(2):403–417. doi:10.1016/j.ydbio.2008.10.01118996109