158
Views
5
CrossRef citations to date
0
Altmetric
Original Research

In vivo Screening of Natural Products Against Angiogenesis and Mechanisms of Anti-Angiogenic Activity of Deoxysappanone B 7,4ʹ-Dimethyl Ether

, , , , , & show all
Pages 3069-3078 | Published online: 30 Jul 2020

References

  • AcunzoM, RomanoG, WernickeD, CroceCM. MicroRNA and cancer – a brief overview. Adv Biol Regul. 2015;57:1–9. doi:10.1016/j.jbior.2014.09.01325294678
  • BirbrairA, ZhangT, WangZM, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1):C25–38. doi:10.1152/ajpcell.00084.201424788248
  • RajabiM, MousaSA. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5(2):34. doi:10.3390/biomedicines5020034
  • NishidaN, YanoH, NishidaT, KamuraT, KojiroM. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–219. doi:10.2147/vhrm.2006.2.3.21317326328
  • MousaSA, DavisPJ. Angiogenesis and Anti-Angiogenesis Strategies in Cancer Therapeutics. Academic Press; 2017.
  • ShenB. A new golden age of natural products drug discovery. Cell. 2015;163(6):1297–1300. doi:10.1016/j.cell.2015.11.03126638061
  • NewmanDJ, CraggGM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311–335. doi:10.1021/np200906s22316239
  • ParngC, SengWL, SeminoC, McGrathP. Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol. 2002;1(1 Pt 1):41–48. doi:10.1089/15406580276100129315090155
  • MandrekarN, ThakurNL. Significance of the zebrafish model in the discovery of bioactive molecules from nature. Biotechnol Lett. 2009;31(2):171–179. doi:10.1007/s10529-008-9868-118931972
  • CrawfordAD, LiekensS, KamuhabwaAR, et al. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One. 2011;6(2):e14694. doi:10.1371/journal.pone.001469421379387
  • PantelJ, WilliamsSY, MiD, et al. Development of a high throughput screen for allosteric modulators of melanocortin-4 receptor signaling using a real time camp assay. Eur J Pharmacol. 2011;660(1):139–147. doi:10.1016/j.ejphar.2011.01.03121296065
  • CrossLM, CookMA, LinS, ChenJ-N, RubinsteinAL. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscle Thromb Vasc Biol. 2003;23(5):911–912. doi:10.1161/01.ATV.0000068685.72914.7E
  • WangC, TaoW, WangY, et al. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol. 2010;58(3):418–426. doi:10.1016/j.eururo.2010.05.02420605315
  • ChenK, WangC, FanY, et al. Identification of mundoserone by zebrafish in vivo screening as a natural product with anti-angiogenic activity. Exp Ther Med. 2018;16(6):4562–4568. doi:10.3892/etm.2018.674830542405
  • KimmelCB, BallardWW, KimmelSR, UllmannB, SchillingTF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. doi:10.1002/aja.10020303028589427
  • LawsonND, WeinsteinBM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307–318. doi:10.1006/dbio.2002.071112167406
  • ChanJ, BaylissPE, WoodJM, RobertsTM. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell. 2002;1(3):257–267. doi:10.1016/S1535-6108(02)00042-912086862
  • XuH, ZhangY, PenaMM, PirisiL, CreekKE. Six1 promotes colorectal cancer growth and metastasis by stimulating angiogenesis and recruiting tumor-associated macrophages. Carcinogenesis. 2017;38(3):281–292. doi:10.1093/carcin/bgw12128199476
  • MalecicN, YoungHS. Excessive angiogenesis associated with psoriasis as a cause for cardiovascular ischaemia. Exp Dermatol. 2017;26(4):299–304. doi:10.1111/exd.1331028156019
  • Abu El-AsrarAM, StruyfS, MohammadG, et al. Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(7):3189–3201. doi:10.1167/iovs.16-2099328654984
  • LuY, YuSS, ZongM, et al. Glucose-6-phosphate isomerase (g6pi) mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Sci Rep. 2017;7:40274. doi:10.1038/srep4027428067317
  • RakhilaH, Al-AkoumM, BergeronME, et al. Promotion of angiogenesis and proliferation cytokines patterns in peritoneal fluid from women with endometriosis. J Reprod Immunol. 2016;116:1–6. doi:10.1016/j.jri.2016.01.00527128987
  • LiangF, HanY, GaoH, et al. Kaempferol identified by zebrafish assay and fine fractionations strategy from dysosma versipellis inhibits angiogenesis through VEGF and FGF pathways. Sci Rep. 2015;5:14468. doi:10.1038/srep1446826446489
  • YangGW, JiangJS, LuWQ. Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci. 2015;16(10):24011–24031. doi:10.3390/ijms16102401126473837
  • ZhaoD, QinC, FanX, LiY, GuB. Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. Eur J Pharmacol. 2014;723:360–367. doi:10.1016/j.ejphar.2013.10.06924239714
  • OhWK, McDermottD, PortaC, et al. Angiogenesis inhibitor therapies for advanced renal cell carcinoma: toxicity and treatment patterns in clinical practice from a global medical chart review. Int J Oncol. 2014;44(1):5–16. doi:10.3892/ijo.2013.218124247547
  • MotzerRJ, PortaC, VogelzangNJ, et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised Phase 3 trial. Lancet Oncol. 2014;15(3):286–296. doi:10.1016/S1470-2045(14)70030-024556040
  • PitchaiA, RajaretinamRK, FreemanJL. Zebrafish as an emerging model for bioassay-guided natural product drug discovery for neurological disorders. Medicines (Basel). 2019;6(2):61.
  • CrawfordAD, EsguerraCV, de WittePA. Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery. Planta Med. 2008;74(6):624–632. doi:10.1055/s-2008-103437418584811
  • LamHW, LinHC, LaoSC, et al. The angiogenic effects of angelica sinensis extract on huvec in vitro and zebrafish in vivo. J Cell Biochem. 2008;103(1):195–211. doi:10.1002/jcb.2140317497682
  • BernardD, GebbiaM, PrabhaS, et al. Select microtubule inhibitors increase lysosome acidity and promote lysosomal disruption in acute myeloid leukemia (aml) cells. Apoptosis. 2015;20(7):948–959. doi:10.1007/s10495-015-1123-325832785
  • CrossMJ, Claesson-WelshL. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–207. doi:10.1016/S0165-6147(00)01676-X11282421
  • HatanakaK, LanahanAA, MurakamiM, SimonsM, Ushio-FukaiM. Fibroblast growth factor signaling potentiates ve-cadherin stability at adherens junctions by regulating shp2. PLoS One. 2012;7(5):e37600. doi:10.1371/journal.pone.003760022629427
  • SauteurL, KrudewigA, HerwigL, et al. Cdh5/ve-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep. 2014;9(2):504–513. doi:10.1016/j.celrep.2014.09.02425373898
  • PestellRG. New roles of cyclin d1. Am J Pathol. 2013;183(1):3–9. doi:10.1016/j.ajpath.2013.03.00123790801
  • ScodittiE, CalabrisoN, MassaroM, et al. Mediterranean diet polyphenols reduce inflammatory angiogenesis through mmp-9 and cox-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys. 2012;527(2):81–89. doi:10.1016/j.abb.2012.05.00322595400
  • DubracA, GenetG, OlaR, et al. Targeting nck-mediated endothelial cell front-rear polarity inhibits neovascularization. Circulation. 2016;133(4):409–421. doi:10.1161/CIRCULATIONAHA.115.01753726659946
  • RamaN, DubracA, MathivetT, et al. Slit2 signaling through robo1 and robo2 is required for retinal neovascularization. Nat Med. 2015;21(5):483–491. doi:10.1038/nm.384925894826
  • BedellVM, YeoSY, ParkKW, et al. Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A. 2005;102(18):6373–6378. doi:10.1073/pnas.040831810215849270
  • JonesCA, NishiyaN, LondonNR, et al. Slit2-robo4 signalling promotes vascular stability by blocking arf6 activity. Nat Cell Biol. 2009;11(11):1325–1331. doi:10.1038/ncb197619855388
  • SheldonH, AndreM, LeggJA, et al. Active involvement of robo1 and robo4 in filopodia formation and endothelial cell motility mediated via wasp and other actin nucleation-promoting factors. FASEB J. 2009;23(2):513–522. doi:10.1096/fj.07-09826918948384
  • LiaoWX, LaurentLC, AgentS, HodgesJ, ChenDB. Human placental expression of slit/robo signaling cues: effects of preeclampsia and hypoxia. Biol Reprod. 2012;86(4):111. doi:10.1095/biolreprod.110.08813822262697
  • LawsonND, ScheerN, PhamVN, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development. 2001;128(19):3675–3683.11585794
  • HellstromM, PhngLK, HofmannJJ, et al. Dll4 signalling through notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445(7129):776–780. doi:10.1038/nature0557117259973
  • SiekmannAF, LawsonND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007;445(7129):781–784. doi:10.1038/nature0557717259972
  • ShirotaH, KlinmanDM. Recent progress concerning cpg DNA and its use as a vaccine adjuvant. Expert Rev Vaccines. 2014;13(2):299–312. doi:10.1586/14760584.2014.86371524308579
  • IsoT, MaenoT, OikeY, et al. Dll4-selective notch signaling induces ephrinb2 gene expression in endothelial cells. Biochem Biophys Res Commun. 2006;341(3):708–714. doi:10.1016/j.bbrc.2006.01.02016430858
  • TaylorKL, HendersonAM, HughesCC. Notch activation during endothelial cell network formation in vitro targets the basic hlh transcription factor hesr-1 and downregulates vegfr-2/kdr expression. Microvasc Res. 2002;64(3):372–383. doi:10.1006/mvre.2002.244312453432
  • RochonER, WrightDS, SchubertMM, RomanBL. Context-specific interactions between notch and alk1 cannot explain alk1-associated arteriovenous malformations. Cardiovasc Res. 2015;107(1):143–152. doi:10.1093/cvr/cvv14825969392