401
Views
30
CrossRef citations to date
0
Altmetric
Original Research

Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability

, , , , , , , ORCID Icon, ORCID Icon & show all
Pages 2959-2975 | Published online: 27 Jul 2020

References

  • TangYN, PangYX, HeXC, et al. UPLC-QTOF-MS identification of metabolites in rat biosamples after oral administration of Dioscorea saponins: a comparative study. J Ethnopharmacol. 2015;165:127–140. doi:10.1016/j.jep.2015.02.01725698242
  • ChengX, SuX, ChenX, et al. Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan. Sci Rep. 2014;4:5147. doi:10.1038/srep0514724888649
  • ZhouW, ChengX, ZhangY. Effect of liuwei dihuang decoction, a traditional Chinese medicinal prescription, on the neuroendocrine immunomodulation network. Pharmacol Ther. 2016;162:170–178. doi:10.1016/j.pharmthera.2016.02.00426896567
  • JiaY, ChenC, NgCS, et al. Meta-analysis of randomized controlled trials on the efficacy of di’ao xinxuekang capsule and isosorbide dinitrate in treating angina pectoris. Evid Based Complement Alternat Med. 2012;904147.22474528
  • FengJF, TangYN, JiH, et al. Biotransformation of Dioscorea nipponica by rat intestinal microflora and cardioprotective effects of diosgenin. Oxid Med Cell Longev. 2017;4176518.29085554
  • WangWC, LiuSF, ChangWT, et al. The effects of diosgenin in the regulation of renal proximal tubular fibrosis. Exp Cell Res. 2014;323(2):255–262. doi:10.1016/j.yexcr.2014.01.02824525371
  • ManivannanJ, BalamuruganE, SilambarasanT, et al. Diosgenin improves vascular function by increasing aortic eNOS expression, normalize dyslipidemia and ACE activity in chronic renal failure rats. Mol Cell Biochem. 2013;384(1–2):113–120. doi:10.1007/s11010-013-1788-223975507
  • FrohnertBI, BernlohrDA. Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Adv Nutr. 2013;4(2):157–163. doi:10.3945/an.112.00331923493532
  • XiaoL, GuoD, HuC, et al. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia. 2012;60(7):1037–1052. doi:10.1002/glia.2233322461009
  • KhosraviZ, SedaghatR, BaluchnejadmojaradT, et al. Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int Immunopharmacol. 2019;70:37–46. doi:10.1016/j.intimp.2019.01.04730785089
  • SultanaN. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids. 2018;136:76–92. doi:10.1016/j.steroids.2018.01.00729360535
  • HaratakeA, WataseD, SetoguchiS, et al. Effect of orally ingested diosgenin into diet on skin collagen content in a low collagen skin mouse model and its mechanism of action. Life Sci. 2017;174:77–82. doi:10.1016/j.lfs.2017.02.01328259652
  • QuiñonesJP, IturmendiA, HenkeH, et al. Polyphosphazene-based nanocarriers for the release of agrochemicals and potential anticancer drugs. J Mater Chem B. 2019;7(48):7783–7794. doi:10.1039/C9TB01985E31755890
  • QinY, WuX, HuangW, et al. Acute toxicity and sub-chronic toxicity of steroidal saponins from Dioscorea zingiberensis C.H. Wright in rodents. J Ethnopharmacol. 2009;126(3):543–550. doi:10.1016/j.jep.2009.08.04719735710
  • LeiG, LiuG, MaJ, et al. Application of drug nanocrystal technologies for oral drug delivery of poorly soluble drugs. Pharm Res. 2012;30(2):307–324. doi:10.1007/s11095-012-0889-z23073665
  • SuganoK, KansyM, ArturssonP, et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov. 2010;9(8):597–614. doi:10.1038/nrd318720671764
  • RyttingE, LentzKA, ChenX, et al. Aqueous and cosolvent solubility data for drug-like organic compounds. AAPS J. 2005;7(1):E78–E105. doi:10.1208/aapsj07011016146352
  • OkawaraM, HashimotoF, TodoH, SugibayashiK, TokudomeY. Effect of liquid crystals with cyclodextrin on the bioavailability of a poorly water-soluble compound, diosgenin, after its oral administration to rats. Int J Pharm. 2014;472(1–2):257–261. doi:10.1016/j.ijpharm.2014.06.03224954725
  • OkawaraM, TokudomeY, TodoH, et al. Effect of β-cyclodextrin derivatives on the diosgenin absorption in caco-2 cell monolayer and rats. Biol Pharm Bull. 2014;37(1):54–59. doi:10.1248/bpb.b13-0056024389481
  • LiuCZ, ChangJ, ZhangL, et al. Preparation and evaluation of diosgenin nanocrystals to improve oral bioavailability. AAPS PharmSciTech. 2017;18(6):2067–2076. doi:10.1208/s12249-016-0684-y27995466
  • LiB, KoneckeS, WegielLA, et al. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr Polym. 2013;98(1):1108–1116. doi:10.1016/j.carbpol.2013.07.01723987452
  • XiongXN, ZhangM, HouQ, et al. Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation. Mater Sci Eng C Mater Biol Appl. 2019;105:0928–4931. doi:10.1016/j.msec.2019.110012
  • FrançaMT, O’Reilly BeringhsA, Nicolay PereiraR, et al. The role of sodium alginate on the supersaturation state of the poorly soluble drug chlorthalidone. Carbohydr Polym. 2019;209:207–214. doi:10.1016/j.carbpol.2019.01.00730732801
  • PriceDJ, DitzingerF, KoehlNJ, et al. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations-a PEARRL review. J Pharm Pharmacol. 2019;71(4):483–509. doi:10.1111/jphp.1292729770440
  • FrançaMT, NicolayRP, RiekesMK, et al. Investigation of novel supersaturating drug delivery systems of chlorthalidone: the use of polymer-surfactant complex as an effective carrier in solid dispersions. Eur J Pharm Sci. 2018;533(1):266.
  • AndreasS, Jorg Hand MaximP. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 2020;27(1):110–127. doi:10.1080/10717544.2019.170494031885288
  • BoelE, SmeetsA, VergaelenM, et al. Comparative study of the potential of poly (2- ethyl −2- oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. Eur J Pharm Biopharm. 2019;144:79–90. doi:10.1016/j.ejpb.2019.09.00531499162
  • ShammaRN, BashaM. Soluplus: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 2013;237:406–414. doi:10.1016/j.powtec.2012.12.038
  • PunčochováK, VukosavljevicB, HanušJ, et al. Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy. Eur J Pharm Biopharm. 2016;101:119–125. doi:10.1016/j.ejpb.2016.02.00126861928
  • ShiX, XuT, HuangW, et al. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer(s) interactions. AAPS PharmSciTech. 2019;20(4):143. doi:10.1208/s12249-019-1358-330887265
  • RaniS, MishraS, SharmaM, et al. Solubility and stability enhancement of curcumin in Soluplus ® polymeric micelles: a spectroscopic study. J Disper Sci Technol. 2020;41(4):523–536. doi:10.1080/01932691.2019.1592687
  • SinghJ, MittalP, VasntB, et al. Design, optimization, characterization and in-vivo evaluation of quercetin enveloped soluplus®/P407 micelles in diabetes treatment. Artif Cell Nanomed B. 2018;46(3):546–555. doi:10.1080/21691401.2018.1501379
  • SongB, WangJ, LuSJ, et al. Andrographolide solid dispersions formulated by soluplus to enhance interface wetting, dissolution, and absorption. J Appl Polym Sci. 2020;137(6):48354. doi:10.1002/app.48354
  • AbhijeetDK, VeenaSB. Influence of novel carrier soluplus® on aqueous stability, oral bioavailability, and anticancer activity of Morin hydrate. Dry Technol. 2019;37(9):1143–1161. doi:10.1080/07373937.2018.1488261
  • ShiNQ, LeiYS, SongLM, et al. Impact of amorphous and semicrystalline polymers on the dissolution and crystallization inhibition of pioglitazone solid dispersions. Powder Technol. 2013;247:211–221. doi:10.1016/j.powtec.2013.06.039
  • QianF, WangJ, HartleyR, et al. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications. Pharm Res. 2012;29(10):2765–2776. doi:10.1007/s11095-012-0695-722315020
  • PasT, BergonziA, LescrinierE, et al. Drug-carrier binding and enzymatic carrier digestion in amorphous solid dispersions containing proteins as carrier. Int J Pharm. 2019;563:358–372. doi:10.1016/j.ijpharm.2019.03.06230935916
  • SunDD, LeePI. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):26–36. doi:10.1016/j.apsb.2013.12.00226579361
  • ChavanRB, RathiS, ShastriNR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 2019;3:248–264. doi:10.1016/j.ajps.2018.09.003
  • BevernageJ, ForierT, BrouwersJ, et al. Excipient-mediated supersaturation stabilization in human intestinal fluids. Mol Pharm. 2011;8(2):564–570. doi:10.1021/mp100377m21268663
  • YamashitaT, OzakiS, KushidaI. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide. Int J Pharm. 2011;419(1–2):170–174. doi:10.1016/j.ijpharm.2011.07.04521840385
  • SunM, WuC, FuQ, et al. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions. Int J Pharm. 2016;503(1–2):238–246. doi:10.1016/j.ijpharm.2016.01.06226869398
  • EveraertsM, Van den MooterG. Complex amorphous solid dispersions based on poly (2 - hydroxyethyl methacrylate): study of drug release from a hydrophilic insoluble polymeric carrier in the presence and absence of a porosity increasing agent. Int J Pharm. 2019;566:77–88. doi:10.1016/j.ijpharm.2019.05.04031103819
  • PengR, HuangJ, HeL, et al. Polymer/lipid interplay in altering in vitro supersaturation and plasma concentration of a model poorly soluble drug. Eur J Pharm Sci. 2020;146:105262. doi:10.1016/j.ejps.2020.10526232060005
  • VasconcelosT, MarquesS, NevesJ, SarmentoB. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85–101. doi:10.1016/j.addr.2016.01.01226826438
  • ShiNQ, WangSR, ZhangY, et al. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: profiles and mechanisms. Eur J Pharm Sci. 2019;130:78–90. doi:10.1016/j.ejps.2019.01.01930684657
  • ZiP, ZhangC, JuC, et al. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - soluplus. Eur J Pharm Sci. 2019;134:233–245. doi:10.1016/j.ejps.2019.04.02231028820
  • TrivinoA, GumireddyA, MengF, et al. Drug–polymer miscibility, interactions, and precipitation inhibition studies for the development of amorphous solid dispersions for the poorly soluble anticancer drug flutamide. Drug Dev Ind Pharm. 2019;45(8):1277–1291. doi:10.1080/03639045.2019.160682231111732
  • LlinàsA, GoodmanJM. Polymorph control: past, present and future. Drug Discov Today. 2008;13(5–6):198–210.18342795
  • GongN, WangY, ZhangB, et al. Screening, preparation and characterization of diosgenin versatile solvates. Steroids. 2019;143:18–24. doi:10.1016/j.steroids.2018.11.01630513323
  • YangHY, ZhouZL, ZhouXP, et al. Preparation and properties of sulfadiazine solid dispersion. Chin Pharm J. 2017;52(9):750–754.
  • RiekesMK, KuminekG, RauberGS, et al. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions. Carbohydr Polym. 2014;99:474–482. doi:10.1016/j.carbpol.2013.08.04624274533
  • AgrawalAM, DudhediaMS, PatelAD, et al. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm. 2013;457(1):71–81. doi:10.1016/j.ijpharm.2013.08.08124013161
  • JosimarOE, JulianaMM. Solid dispersions containing ursolic acid in poloxamer 407 and PEG 6000: a comparative study of fusion and solvent methods. Powder Technol. 2014;253:98–106. doi:10.1016/j.powtec.2013.11.017
  • KarmwarP, GraeserK, GordonKC. Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin. Eur J Pharm Biopharm. 2012;80(2):459–464. doi:10.1016/j.ejpb.2011.10.00622019529
  • VasanthavadaM, TongW, JoshiY, et al. Phase behavior of amorphous molecular dispersions i: determination of the degree and mechanism of solid solubility. Pharm Res. 2005;21(9):1598–1606. doi:10.1023/B:PHAM.0000041454.76342.0e
  • AhmadN, AhmadR, AlamMA, et al. Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles. Int J Biol Macromol. 2019;128:825–838. doi:10.1016/j.ijbiomac.2019.01.14230690115