162
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Fatostatin in Combination with Tamoxifen Induces Synergistic Inhibition in ER-Positive Breast Cancer

, , , , , , , ORCID Icon, , , , , , & ORCID Icon show all
Pages 3535-3545 | Published online: 26 Aug 2020

References

  • DeSantisCE, MillerKD, GodingSauer A, JemalA, SiegelRL. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–451. doi:10.3322/caac.2158331577379
  • MorganMM, JohnsonBP, LivingstonMK, et al. Personalized in vitro cancer models to predict therapeutic response: challenges and a framework for improvement. Pharmacol Ther. 2016;165:79–92. doi:10.1016/j.pharmthera.2016.05.00727218886
  • MusgroveEA, SutherlandRL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–643. doi:10.1038/nrc271319701242
  • Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi:10.1038/nature1141223000897
  • DemirK, UnuvarT, ErenS, AbaciA, BoberE. Tamoxifen as first-line treatment in a premenarchal girl with juvenile breast hypertrophy. J Pediatr Adolesc Gynecol. 2010;23(5):e133–e136. doi:10.1016/j.jpag.2009.11.00320813327
  • TakaiY, SasakiT, MatozakiT. Small GTP-binding proteins. Physiol Rev. 2001;81(1):153–208. doi:10.1152/physrev.2001.81.1.15311152757
  • Early Breast Cancer Trialists’ Collaborative, G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–1717. doi:10.1016/S0140-6736(05)66544-015894097
  • Early Breast Cancer Trialists’ Collaborative, G. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet.2011;378(9793):771–784. doi:10.1016/S0140-6736(11)60993-821802721
  • WilhelmSM, AdnaneL, NewellP, VillanuevaA, LlovetJM, LynchM. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–3140. doi:10.1158/1535-7163.MCT-08-001318852116
  • KumarBN, RajputS, DeyKK, et al. Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling. BMC Cancer. 2013;13(1):273. doi:10.1186/1471-2407-13-27323731702
  • HareSH, HarveyAJ. mTOR function and therapeutic targeting in breast cancer. Am J Cancer Res. 2017;7(3):383–404.28400999
  • HanNN, ZhouQ, HuangQ, LiuKJ. Carnosic acid cooperates with tamoxifen to induce apoptosis associated with caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed Pharmacother. 2017;89:827–837. doi:10.1016/j.biopha.2017.01.08428282784
  • FanningSW, JeselsohnR, DharmarajanV, et al. The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. Elife. 2018;7. doi:10.7554/eLife.37161
  • ChoiY, KawazoeY, MurakamiK, MisawaH, UesugiM. Identification of bioactive molecules by adipogenesis profiling of organic compounds. J Biol Chem. 2003;278(9):7320–7324. doi:10.1074/jbc.M21028320012496288
  • KamisukiS, MaoQ, Abu-ElheigaL, et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol. 2009;16(8):882–892. doi:10.1016/j.chembiol.2009.07.00719716478
  • ZhangN, ZhangH, LiuY, et al. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ. 2019;26(5):843–859. doi:10.1038/s41418-018-0158-829988076
  • SuX, XuX, LiG, LinB, CaoJ, TengL. ER-alpha36: a novel biomarker and potential therapeutic target in breast cancer. Onco Targets Ther. 2014;7:1525–1533.25210466
  • HallJM, CouseJF, KorachKS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem. 2001;276(40):36869–36872. doi:10.1074/jbc.R10002920011459850
  • RenoirJM, MarsaudV, LazennecG. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol. 2013;85(4):449–465. doi:10.1016/j.bcp.2012.10.01823103568
  • LumachiF, LuisettoG, MM BassoS, BassoU, BrunelloA, CamozziV. Endocrine therapy of breast cancer. Curr Med Chem. 2011;18(4):513–522. doi:10.2174/09298671179448017721143113
  • GradisharWJ. Tamoxifen–what next? Oncologist. 2004;9(4):378–384. doi:10.1634/theoncologist.9-4-37815266091
  • SmithRA, CokkinidesV, BrooksD, SaslowD, BrawleyOW. Cancer screening in the United States, 2011: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2011;61(1):8–30. doi:10.3322/caac.2009621205832
  • ChoSK, PedramA, LevinER, KwonYJ. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD). Biomaterials. 2013;34(38):10228–10237. doi:10.1016/j.biomaterials.2013.09.00324055523
  • MotawiTK, AbdelazimSA, DarwishHA, ElbazEM, ShoumanSA. Modulation of tamoxifen cytotoxicity by caffeic acid phenethyl ester in MCF-7 breast cancer cells. Oxid Med Cell Longev. 2016;2016:3017108. doi:10.1155/2016/301710826697130
  • DarakhshanS, GhanbariA, GholamiFR, BidmeshkiAP. Tamoxifen and tranilast show a synergistic effect against breast cancer in vitro. Bratisl Lek Listy. 2015;116(1):69–73.25666966
  • ShimanoH, SatoR. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017;13(12):710–730. doi:10.1038/nrendo.2017.9128849786
  • DuT, SikoraMJ, LevineKM, et al. Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res. 2018;20(1):106. doi:10.1186/s13058-018-1041-830180878
  • ShaoW, MachamerCE, EspenshadePJ. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner. J Lipid Res. 2016;57(8):1564–1573. doi:10.1194/jlr.M06958327324795
  • LiX, ChenYT, HuP, HuangWC. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Cancer Ther. 2014;13(4):855–866. doi:10.1158/1535-7163.MCT-13-079724493696
  • SekarS, GopalakrishnanV, TaghibiglouC. Sterol regulatory element-binding protein 1 inhibitors decrease pancreatic cancer cell viability and proliferation. Biochem Biophys Res Commun. 2017;488(1):136–140. doi:10.1016/j.bbrc.2017.05.02328483521
  • de MeloAC, PaulinoE, GarcesAH. A review of mTOR pathway inhibitors in gynecologic cancer. Oxid Med Cell Longev. 2017;2017:4809751. doi:10.1155/2017/480975128286604
  • ZhuH, LiuQ, TangJ, et al. Alpha1-ACT functions as a tumour suppressor in hepatocellular carcinoma by Inhibiting the PI3K/AKT/mTOR signalling pathway via activation of PTEN. Cell Physiol Biochem. 2017;41(6):2289–2306. doi:10.1159/00047564828456796
  • ZhangD, WangS, ChenJ, et al. Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int J Oncol. 2017;50(5):1513–1530. doi:10.3892/ijo.2017.392128339091
  • WooSU, SangaiT, AkcakanatA, ChenH, WeiC, Meric-BernstamF. Vertical inhibition of the PI3K/Akt/mTOR pathway is synergistic in breast cancer. Oncogenesis. 2017;6(10):e385. doi:10.1038/oncsis.2017.8628991258
  • GalluzziL, Bravo-San PedroJM, LevineB, GreenDR, KroemerG. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16(7):487–511.28529316
  • Shoji-KawataS, SumpterR, LevenoM, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–206. doi:10.1038/nature1186623364696
  • WhiteE. The role for autophagy in cancer. J Clin Invest. 2015;125(1):42–46. doi:10.1172/JCI7394125654549
  • BrovkovychV, IzharY, DanesJM, et al. Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis. 2018;7(8):66. doi:10.1038/s41389-018-0076-030140005
  • AlferezDG, SimõesBM, HowellSJ, ClarkeRB. The role of steroid hormones in breast and effects on cancer stem cells. Curr Stem Cell Rep. 2018;4(1):81–94. doi:10.1007/s40778-018-0114-z29600163
  • DwaneL, GallagherWM, ChonghaileTN, O’ConnorDP. The emerging role of non-traditional ubiquitination in oncogenic pathways. J Biol Chem. 2017;292(9):3543–3551. doi:10.1074/jbc.R116.75569428154183
  • HaglundK, SigismundS, PoloS, SzymkiewiczI, DiFiore PP, DikicI. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol. 2003;5(5):461–466. doi:10.1038/ncb98312717448
  • BistP, CheongWS, NgA, et al. E3 ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nat Commun. 2017;8:15865. doi:10.1038/ncomms1586528656966