2,085
Views
79
CrossRef citations to date
0
Altmetric
Review

Evaluation of the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer

&
Pages 2423-2433 | Published online: 18 Jun 2020

References

  • SchegerinM, TostesonANA, KaufmanPA, PaulsenKD, PogueBW. Prognostic imaging in neoadjuvant chemotherapy of locally-advanced breast cancer should be cost-effective. Breast Cancer Res Treat. 2009;114(3):537–547. doi:10.1007/s10549-008-0025-218437559
  • CharfareH, LimongelliS, PurushothamA. Neoadjuvant chemotherapy in breast cancer. Br J Surg. 2005;92(1):14–23. doi:10.1002/bjs.484015635596
  • CostaSD, LoiblS, KaufmannM. Neoadjuvant chemotherapy shows similar response in patients with inflammatory or locally advanced breast cancer when compared with operable breast cancer: a secondary analysis of the GeparTrio trial data. J Clin Oncol. 2010;28(1):83–91. doi:10.1200/JCO.2009.23.510119901111
  • KatzSJ. Surgeon recommendations and receipt of mastectomy for treatment of breast cancer. Obstet Gynecol Surv. 2009;65(14):1551–1556.
  • BuchholzTA, MittendorfEA, HuntKK. Surgical considerations after neoadjuvant chemotherapy: breast conservation therapy. J Natl Cancer Inst Monogr. 2015;51:51.
  • SchottAF, HayesDF. Defining the benefits of neoadjuvant chemotherapy for breast cancer. J Clin Oncol. 2012;30(15):1747–1749. doi:10.1200/JCO.2011.41.316122508810
  • Vaidya JS, Massarut S, Vaidya HJ, et al. Rethinking neoadjuvant chemotherapy for breast cancer.  BMJ. 2018; 360:j5913. doi:10.1136/bmj.j5913
  • MasudaN, LeeSJ, OhtaniS, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376(22):2147–2159. doi:10.1056/NEJMoa161264528564564
  • von MinckwitzG, BlohmerJU, CostaSD, et al. Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol. 2013;31(29):3623–3630. doi:10.1200/JCO.2012.45.094024002511
  • SpringLM, FellG, ArfeA, et al. Pathological complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res. 2020. doi:10.1158/1078-0432.CCR-19-3492
  • KrishnanY, AlawadhiSA, SreedharanPS, GopalM, ThuruthelS. Pathological responses and long-term outcome analysis after neoadjuvant chemotheraphy in breast cancer patients from Kuwait over a period of 15 years. Ann Saudi Med. 2013;33(5):443–450. doi:10.5144/0256-4947.2013.44324188937
  • TherasseP, ArbuckSG, EisenhauerEA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–216. doi:10.1093/jnci/92.3.20510655437
  • SchwartzLH, LitièreS, de VriesE, et al. RECIST 1.1-update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132–137. doi:10.1016/j.ejca.2016.03.08127189322
  • MillerAB, HoogstratenB, StaquetM, WinklerA. Reporting results of cancer treatment. Cancer. 1981;47(1):207–214. doi:10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-67459811
  • SchwartzLH, SeymourL, LitièreS, et al. RECIST 1.1 - standardisation and disease-specific adaptations: perspectives from the RECIST working group. Eur J Cancer. 2016;62:138–145. doi:10.1016/j.ejca.2016.03.08227237360
  • EisenhauerEA, TherasseP, BogaertsJ, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–247. doi:10.1016/j.ejca.2008.10.02619097774
  • LitièreS, ColletteS, de VriesEG, SeymourL, BogaertsJ. RECIST - learning from the past to build the future. Nat Rev Clin Oncol. 2017;14(3):187–192. doi:10.1038/nrclinonc.2016.19527995946
  • MuenzelD, EngelsHP, BruegelM, KehlV, RummenyEJ, MetzS. Intra- and inter-observer variability in measurement of target lesions: implication on response evaluation according to RECIST 1.1. Radiol Oncol. 2012;46(1):8–18. doi:10.2478/v10019-012-0009-z22933974
  • FukadaI, ArakiK, KobayashiK, et al. Pattern of tumor shrinkage during neoadjuvant chemotherapy is associated with prognosis in low-grade luminal early breast cancer. Radiology. 2018;286(1):49–57. doi:10.1148/radiol.201716154828737968
  • LiM, XuB, ShaoY, LiuH, DuB, YuanJ. Magnetic resonance imaging patterns of tumor regression in breast cancer patients after neo-adjuvant chemotherapy, and an analysis of the influencing factors. Breast J. 2017;23(6):656–662. doi:10.1111/tbj.1281128397346
  • EomHJ, ChaJH, ChoiWJ, ChaeEY, ShinHJ, KimHH. Predictive clinicopathologic and dynamic contrast-enhanced MRI findings for tumor response to neoadjuvant chemotherapy in triple-negative breast cancer. AJR Am J Roentgenol. 2017;208(6):W225–W230. doi:10.2214/AJR.16.1712528350486
  • HyltonNM, BlumeJD, BernreuterWK, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263(3):663–672. doi:10.1148/radiol.1211074822623692
  • RauchGM, AdradaBE, KuererHM, van la ParraRF, LeungJW, YangWT. Multimodality imaging for evaluating response to neoadjuvant chemotherapy in breast cancer. AJR Am J Roentgenol. 2017;208(2):290–299. doi:10.2214/AJR.16.1722327809573
  • LiH, YaoL, JinP, et al. MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Breast (Edinburgh, Scotland). 2018;40:106–115. doi:10.1016/j.breast.2018.04.018
  • van der NoordaaMEM, van DuijnhovenFH, StraverME, et al. Major reduction in axillary lymph node dissections after neoadjuvant systemic therapy for node-positive breast cancer by combining PET/CT and the MARI procedure. Ann Surg Oncol. 2018;25(6):1512–1520. doi:10.1245/s10434-018-6404-y29511992
  • ChristinOL, KutenJ, Even-SapirE, KlausnerJ, MenesTS. Node positive breast cancer: concordance between baseline PET/CT and sentinel node assessment after neoadjuvant therapy. Surg Oncol. 2019;30:1–5. doi:10.1016/j.suronc.2019.05.00631500769
  • Thomassin-NaggaraI, TardivonA, ChopierJ. Standardized diagnosis and reporting of breast cancer. Diagn Interv Imaging. 2014;95(7–8):759–766. doi:10.1016/j.diii.2014.06.00625017150
  • FowlerAM, MankoffDA, JoeBN. Imaging neoadjuvant therapy response in breast cancer. Radiology. 2017;285(2):358–375. doi:10.1148/radiol.201717018029045232
  • KimYS, ChangJM, MoonHG, LeeJ, ShinSU, MoonWK. Residual mammographic microcalcifications and enhancing lesions on MRI after neoadjuvant systemic chemotherapy for locally advanced breast cancer: correlation with histopathologic residual tumor size. Ann Surg Oncol. 2016;23(4):1135–1142. doi:10.1245/s10434-015-4993-226628432
  • EvansA, WhelehanP, ThompsonA, et al. Prediction of pathological complete response to neoadjuvant chemotherapy for primary breast cancer comparing interim ultrasound, shear wave elastography and MRI. Ultraschall Med. 2018;39(4):422–431. doi:10.1055/s-0043-11158928934812
  • Piotrzkowska-WróblewskaH, Dobruch-SobczakK, KlimondaZ, et al. Monitoring breast cancer response to neoadjuvant chemotherapy with ultrasound signal statistics and integrated backscatter. PLoS One. 2019;14(3):e0213749. doi:10.1371/journal.pone.021374930870478
  • MattinglyAE, MooneyB, LinHY, et al. Magnetic resonance imaging for axillary breast cancer metastasis in the neoadjuvant setting: a prospective study. Clin Breast Cancer. 2017;17(3):180–187. doi:10.1016/j.clbc.2016.11.00427956116
  • RajanR, PonieckaA, SmithTL, et al. Change in tumor cellularity of breast carcinoma after neoadjuvant chemotherapy as a variable in the pathologic assessment of response. Cancer. 2004;100(7):1365–1373. doi:10.1002/cncr.2013415042669
  • BaumgartnerA, TauschC, HoschS, et al. Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast (Edinburgh, Scotland). 2018;39:19–23. doi:10.1016/j.breast.2018.02.028
  • MarinovichML, HoussamiN, MacaskillP, von MinckwitzG, BlohmerJU, IrwigL. Accuracy of ultrasound for predicting pathologic response during neoadjuvant therapy for breast cancer. Int J Cancer. 2015;136(11):2730–2737. doi:10.1002/ijc.2932325387885
  • AbediM, FarrokhD, Shandiz HomaeiF, et al. The validity of MRI in evaluation of tumor response to neoadjuvant chemotherapy in locally advanced breast cancer. Iran J Cancer Prev. 2013;6(1):28–35.25250107
  • ChoiWJ, KimHH, ChaJH, ShinHJ, ChaeEY. Comparison of pathologic response evaluation systems after neoadjuvant chemotherapy in breast cancers: correlation with computer-aided diagnosis of MRI features. AJR Am J Roentgenol. 2019;213(4):944–952. doi:10.2214/AJR.18.2101631237439
  • TaydaşO, DurhanG, AkpınarMG, DemirkazıkFB. Comparison of MRI and US in tumor size evaluation of breast cancer patients receiving neoadjuvant chemotherapy. Eur J Breast Health. 2019;15(2):119–124. doi:10.5152/ejbh.2019.454731001614
  • GoortsB, DreuningKMA, HouwersJB, et al. MRI-based response patterns during neoadjuvant chemotherapy can predict pathological (complete) response in patients with breast cancer. Breast Cancer Res. 2018;20(1):34. doi:10.1186/s13058-018-0950-x29669584
  • LobbesMB, LaljiUC, NelemansPJ, et al. The quality of tumor size assessment by contrast-enhanced spectral mammography and the benefit of additional breast MRI. J Cancer. 2015;6(2):144–150. doi:10.7150/jca.1070525561979
  • TürkbeyB, ThomassonD, PangY, BernardoM, ChoykePL. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010;16(3):186–192. doi:10.4261/1305-3825.DIR.2537-08.119885783
  • KimY, KimSH, LeeHW, et al. Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer. Magn Reson Imaging. 2018;48:27–33. doi:10.1016/j.mri.2017.12.01829278762
  • NewittDC, ZhangZ, GibbsJE, et al. Test-retest repeatability and reproducibility of ADC measures by breast DWI: results from the ACRIN 6698 trial. J Magn Reson Imaging. 2019;49(6):1617–1628. doi:10.1002/jmri.2653930350329
  • TahmassebiA, WengertGJ, HelbichTH, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol. 2019;54(2):110–117. doi:10.1097/RLI.000000000000051830358693
  • YouC, LiJ, ZhiW, et al. The volumetric-tumour histogram-based analysis of intravoxel incoherent motion and non-Gaussian diffusion MRI: association with prognostic factors in HER2-positive breast cancer. J Transl Med. 2019;17(1):182. doi:10.1186/s12967-019-1911-631262334
  • CheS, ZhaoX, OuY, et al. Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer. Medicine. 2016;95(4):e2420. doi:10.1097/MD.000000000000242026825883
  • ChoGY, MoyL, KimSG, et al. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol. 2016;26(8):2547–2558. doi:10.1007/s00330-015-4087-326615557
  • MaoX, ZouX, YuN, JiangX, DuJ. Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging (IVIM) for differential diagnosis and grading prediction of benign and malignant breast lesions. Medicine. 2018;97(26):e11109. doi:10.1097/MD.000000000001110929952951
  • ZhangD, ZhangQ, SuoS, et al. Apparent diffusion coefficient measurement in luminal breast cancer: will tumour shrinkage patterns affect its efficacy of evaluating the pathological response? Clin Radiol. 2018;73(10):909.e907–909.e914. doi:10.1016/j.crad.2018.05.026
  • MoyL. Do tumor shrinkage patterns at breast MR imaging predict survival? Radiology. 2018;286(1):58–59. doi:10.1148/radiol.201717197529261475
  • TomidaK, IshidaM, UmedaT, et al. Magnetic resonance imaging shrinkage patterns following neoadjuvant chemotherapy for breast carcinomas with an emphasis on the radiopathological correlations. Mol clin oncol. 2014;2(5):783–788. doi:10.3892/mco.2014.33325054046
  • NegrãoEMS, SouzaJA, MarquesEF, BitencourtAGV. Breast cancer phenotype influences MRI response evaluation after neoadjuvant chemotherapy. Eur J Radiol. 2019;120:108701. doi:10.1016/j.ejrad.2019.10870131610321
  • Caresia ArozteguiAP, García VicenteAM, Alvarez RuizS, et al. 18F-FDG PET/CT in breast cancer: evidence-based recommendations in initial staging. Tumour Biol. 2017;39(10):1010428317728285. doi:10.1177/101042831772828529025377
  • WahlRL, JaceneH, KasamonY, LodgeMA. From RECIST to PERCIST: evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1(Suppl 1):122s–150s. doi:10.2967/jnumed.108.05730719403881
  • SidawayP. Early PET response predicts complete response. Nat Rev Clin Oncol. 2019;16(4):208. doi:10.1038/s41571-019-0189-1
  • HiekenTJ, BougheyJC, JonesKN, ShahSS, GlazebrookKN. Imaging response and residual metastatic axillary lymph node disease after neoadjuvant chemotherapy for primary breast cancer. Ann Surg Oncol. 2013;20(10):3199–3204. doi:10.1245/s10434-013-3118-z23846781
  • Berriolo-RiedingerA, TouzeryC, RiedingerJM, et al. [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2007;34(12):1915–1924. doi:10.1007/s00259-007-0459-517579854
  • FisherB, BrownA, MamounasE, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15(7):2483–2493. doi:10.1200/JCO.1997.15.7.24839215816
  • OgstonKN, MillerID, PayneS, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast (Edinburgh, Scotland). 2003;12(5):320–327.
  • SahooS, LesterSC. Pathology of breast carcinomas after neoadjuvant chemotherapy: an overview with recommendations on specimen processing and reporting. Arch Pathol Lab Med. 2009;133(4):633–642.19391665
  • ArkhypchukAI, SantoniMP, OttS. Cascade reactions forming highly substituted, conjugated phospholes and 1,2-oxaphospholes. Angew Chem Int Ed Engl. 2012;51(31):7776–7780. doi:10.1002/anie.20120215322730423
  • Penault-LlorcaF, AbrialC, RaoelfilsI, et al. Comparison of the prognostic significance of Chevallier and Sataloff’s pathologic classifications after neoadjuvant chemotherapy of operable breast cancer. Hum Pathol. 2008;39(8):1221–1228. doi:10.1016/j.humpath.2007.11.01918547616
  • ShienT, ShimizuC, SekiK, et al. Comparison among different classification systems regarding the pathological response of preoperative chemotherapy in relation to the long-term outcome. Breast Cancer Res Treat. 2009;113(2):307–313. doi:10.1007/s10549-008-9935-218286370
  • DelageE, RuellandE, ZachowskiA, PuyaubertJ. Eat in or take away? How phosphatidylinositol 4-kinases feed the phospholipase C pathway with substrate. Plant Signal Behav. 2012;7(9):1197–1199. doi:10.4161/psb.2130522899063
  • AmatS, BougnouxP, Penault-LlorcaF, et al. Neoadjuvant docetaxel for operable breast cancer induces a high pathological response and breast-conservation rate. Br J Cancer. 2003;88(9):1339–1345. doi:10.1038/sj.bjc.660091612778058
  • AsanoY, KashiwagiS, GotoW, et al. Prediction of survival after neoadjuvant chemotherapy for breast cancer by evaluation of tumor-infiltrating lymphocytes and residual cancer burden. BMC Cancer. 2017;17(1):888. doi:10.1186/s12885-017-3927-829282021
  • LeeSM, BaeSK, KimTH, et al. Value of 18F-FDG PET/CT for early prediction of pathologic response (by residual cancer burden criteria) of locally advanced breast cancer to neoadjuvant chemotherapy. Clin Nucl Med. 2014;39(10):882–886. doi:10.1097/RLU.000000000000053125072926
  • SheriA, SmithIE, JohnstonSR, et al. Residual proliferative cancer burden to predict long-term outcome following neoadjuvant chemotherapy. Ann Oncol. 2015;26(1):75–80. doi:10.1093/annonc/mdu50825361988
  • SymmansWF, WeiC, GouldR, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol. 2017;35(10):1049–1060. doi:10.1200/JCO.2015.63.101028135148
  • SymmansWF, PeintingerF, HatzisC, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–4422. doi:10.1200/JCO.2007.10.682317785706
  • AbrialC, ThivatE, TaccaO, et al. Measurement of residual disease after neoadjuvant chemotherapy. J Clin Oncol. 2008;26(18):3094;author reply 3095. doi:10.1200/JCO.2008.16.7817
  • MarméF, LedererB, BlohmerJU, et al. Utility of the CPS+EG staging system in hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer treated with neoadjuvant chemotherapy. Eur J Cancer. 2016;53:65–74. doi:10.1016/j.ejca.2015.09.02226693900
  • MittendorfEA, JerussJS, TuckerSL, et al. Validation of a novel staging system for disease-specific survival in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol. 2011;29(15):1956–1962. doi:10.1200/JCO.2010.31.846921482989
  • BougheyJC, PeintingerF, Meric-BernstamF, et al. Impact of preoperative versus postoperative chemotherapy on the extent and number of surgical procedures in patients treated in randomized clinical trials for breast cancer. Ann Surg. 2006;244(3):464–470. doi:10.1097/01.sla.0000234897.38950.5c16926572
  • HoriiR, AkiyamaF. Histological assessment of therapeutic response in breast cancer. Breast Cancer (Tokyo, Japan). 2016;23(4):540–545. doi:10.1007/s12282-013-0499-6
  • ChevallierB, RocheH, OlivierJP, CholletP, HurteloupP. Inflammatory breast cancer. Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am J Clin Oncol. 1993;16(3):223–228. doi:10.1097/00000421-199306000-000068338056
  • SataloffDM, MasonBA, PrestipinoAJ, SeinigeUL, LieberCP, BalochZ. Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J Am Coll Surg. 1995;180(3):297–306.7874340
  • AbrialSC, Penault-LlorcaF, DelvaR, et al. High prognostic significance of residual disease after neoadjuvant chemotherapy: a retrospective study in 710 patients with operable breast cancer. Breast Cancer Res Treat. 2005;94(3):255–263. doi:10.1007/s10549-005-9008-816267618
  • ParkJ, ChaeEY, ChaJH, et al. Comparison of mammography, digital breast tomosynthesis, automated breast ultrasound, magnetic resonance imaging in evaluation of residual tumor after neoadjuvant chemotherapy. Eur J Radiol. 2018;108:261–268. doi:10.1016/j.ejrad.2018.09.03230396666
  • LombardI, Vincent-SalomonA, ValidireP, et al. Human papillomavirus genotype as a major determinant of the course of cervical cancer. J Clin Oncol. 1998;16(8):2613–2619. doi:10.1200/JCO.1998.16.8.26139704710
  • BearHD, AndersonS, BrownA, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2003;21(22):4165–4174. doi:10.1200/JCO.2003.12.00514559892
  • PowlesTJ, HickishTF, MakrisA, et al. Randomized trial of chemoendocrine therapy started before or after surgery for treatment of primary breast cancer. J Clin Oncol. 1995;13(3):547–552. doi:10.1200/JCO.1995.13.3.5477884414
  • FayanjuOM, RenY, ThomasSM, et al. The clinical significance of breast-only and node-only pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT): a review of 20,000 breast cancer patients in the national cancer data base (NCDB). Ann Surg. 2018;268(4):591–601. doi:10.1097/SLA.000000000000295330048319
  • CaudleAS, YangWT, KrishnamurthyS, et al. Improved axillary evaluation following neoadjuvant therapy for patients with node-positive breast cancer using selective evaluation of clipped nodes: implementation of targeted axillary dissection. J Clin Oncol. 2016;34(10):1072–1078. doi:10.1200/JCO.2015.64.009426811528
  • RaczJM, CaudleAS. Sentinel node lymph node surgery after neoadjuvant therapy: principles and techniques. Ann Surg Oncol. 2019;26(10):3040–3045. doi:10.1245/s10434-019-07591-631342394
  • TadrosAB, YangWT, KrishnamurthyS, et al. Identification of patients with documented pathologic complete response in the breast after neoadjuvant chemotherapy for omission of axillary surgery. JAMA Surg. 2017;152(7):665–670. doi:10.1001/jamasurg.2017.056228423171
  • US Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0; Updated 11 27, 2017 Available from: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7. Accessed 717, 2018.
  • SethiD, SenR, ParshadS, KhetarpalS, GargM, SenJ. Histopathologic changes following neoadjuvant chemotherapy in various malignancies. Int J Appl Basic Med Res. 2012;2(2):111–116. doi:10.4103/2229-516X.10635323776823
  • KumarS, BadheBA, KrishnanKM, SagiliH. Study of tumour cellularity in locally advanced breast carcinoma on neo-adjuvant chemotherapy. J Clin Diagn Res. 2014;8(4):Fc09–Fc13. doi:10.7860/JCDR/2014/7594.4283
  • AtuegwuNC, ArlinghausLR, LiX, et al. Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl Oncol. 2013;6(3):256–264. doi:10.1593/tlo.1313023730404
  • KhannaAK, SaxenaSK, KhannaS, KumarA. Histopathological changes following anterior chemotherapy in advanced breast cancer. Indian J Cancer. 1990;27(2):109–115.2228010
  • AktepeF, KapucuoğluN, PakI. The effects of chemotherapy on breast cancer tissue in locally advanced breast cancer. Histopathology. 1996;29(1):63–67. doi:10.1046/j.1365-2559.1996.d01-485.x8818696