184
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Suppression of c-Met-Overexpressing Tumors by a Novel c-Met/CD3 Bispecific Antibody

, ORCID Icon, , , , , & show all
Pages 3201-3214 | Published online: 07 Aug 2020

References

  • PetersS, AdjeiAA. MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol. 2012;9(6):314–326. doi:10.1038/nrclinonc.2012.7122566105
  • FurlanA, KherroucheZ, MontagneR, CopinMC, TulasneD. Thirty years of research on met receptor to move a biomarker from bench to bedside. Cancer Res. 2014;74(23):6737–6744. doi:10.1158/0008-5472.CAN-14-193225411347
  • SmythEC, SclafaniF, CunninghamD. Emerging molecular targets in oncology: clinical potential of met/hepatocyte growth-factor inhibitors. Onco Targets Therapy. 2014;7:1001. doi:10.2147/OTT.S44941
  • DeanM, ParkM, Le BeauMM, RobinsTS, DiazMO. The human met oncogene is related to the tyrosine kinase oncogenes. Nature. 1985;318(6044):385. doi:10.1038/318385a04069211
  • NaldiniL, VignaE, NarsimhanR, GaudinoG, ZarnegarR. Hepatocyte growth factor (hgf) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-met. Oncogene. 1991;6(4):501–504.1827664
  • MarounCR, RowlandsT. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther. 2014;142(3):316–338. doi:10.1016/j.pharmthera.2013.12.01424384534
  • ComoglioPM, GiordanoS, TrusolinoL. Drug development of met inhibitors: targeting oncogene addiction and expedience. Nature reviews Drug discovery. Nat Rev Drug Discov. 2008;7(6):504. doi:10.1038/nrd253018511928
  • VignaE, ComoglioPM. Targeting the oncogenic Met receptor by antibodies and gene therapy. Oncogene. 2015;34(15):1883–1889. doi:10.1038/onc.2014.14224882574
  • GharwanH, GroningerH. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat Rev Clin Oncol. 2016;13(4):209. doi:10.1038/nrclinonc.2015.21326718105
  • KimK-H, KimH. Progress of antibody-based inhibitors of the HGF–cMET axis in cancer therapy. Exp Mol Med. 2017;49(3):e307. doi:10.1038/emm.2017.1728336955
  • VengojiR, MachaMA, NimmakayalaRK, et al. Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. J Exp Clin Cancer Res. 2019;38(1):266. doi:10.1186/s13046-019-1264-231215502
  • RosenLS, GoldmanJW, AlgaziAP, et al. A first-in-human phase i study of a bivalent MET antibody, emibetuzumab (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer. Clin Cancer Res. 2017;23(8):1910–1919. doi:10.1158/1078-0432.CCR-16-141827803065
  • SpigelDR, ErvinTJ, RamlauRA, et al. Randomized Phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(32):4105–4114. doi:10.1200/JCO.2012.47.418924101053
  • MerchantM, MaX, MaunHR, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Nat Acad Sci. 2013;110(32):E2987E2996. doi:10.1073/pnas.130272511023882082
  • BurgessTL, SunJ, MeyerS, et al. Biochemical characterization of AMG 102: a neutralizing, fully human monoclonal antibody to human and nonhuman primate hepatocyte growth factor. Mol Cancer Ther. 2010;9(2):400–409. doi:10.1158/1535-7163.MCT-09-082420124448
  • D’ArcangeloM, CappuzzoF. Focus on the potential role of ficlatuzumab in the treatment of non-small cell lung cancer. Biologics. 2013;7:61–68. doi:10.2147/BTT.S2890823493885
  • Schlereth, Research BJC.. Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. 2005;65(7):2882–2889. doi:10.1158/0008-5472.CAN-04-2637
  • HirschhaeuserF, WalentaS, Mueller-KlieserW. Efficacy of catumaxomab in tumor spheroid killing is mediated by its trifunctional mode of action. Cancer Immunol Immunother. 2010;59(11):1675–1684. doi:10.1007/s00262-010-0894-120652245
  • WuJ, FuJ, ZhangM, LiuD. Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol. 2015;8:104. doi:10.1186/s13045-015-0195-426337639
  • WangZ, JensenMA, ZenklusenJC. A practical guide to the cancer genome atlas (TCGA). Methods Mol Biol. 2016;1418:111–141.27008012
  • ChandrashekarDS, BashelB, BalasubramanyaSAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–658. doi:10.1016/j.neo.2017.05.00228732212
  • NagyA, LanczkyA, MenyhartO, GyorffyB. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8(1):9227. doi:10.1038/s41598-018-27521-y29907753
  • LiH, ChenK, WangZ, et al. Genetic analysis of the clonal stability of Chinese hamster ovary cells for recombinant protein production. Mol Biosyst. 2016;12(1):102–109. doi:10.1039/C5MB00627A26563441
  • SunZ, WuY, HouW, et al. A novel bispecific c-MET/PD-1 antibody with therapeutic potential in solid cancer. Oncotarget. 2017;8(17):29067–29079. doi:10.18632/oncotarget.1617328404966
  • YinY, GuoJ, TengF, et al. Preparation of a novel one-armed anti-c-met antibody with antitumor activity against hepatocellular carcinoma. Drug Des Devel Ther. 2019;13:4173–4184. doi:10.2147/DDDT.S224491
  • HsiehY, AggarwalP, CirelliD, et al. Characterization of FcγRIIIA effector cells used in in vitro ADCC bioassay: comparison of primary NK cells with engineered NK-92 and Jurkat T cells. J Immunol Methods. 2017;441:56–66. doi:10.1016/j.jim.2016.12.00227939300
  • Lopez-AlbaiteroA, XuH, GuoH, et al. Overcoming resistance to Her2-targeted therapy with a novel HER2/CD3 bispecific antibody. OncoImmunology. 2017;6(3):e1267891. doi:10.1080/2162402X.2016.126789128405494
  • TrusolinoL, BertottiA, ComoglioPM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–848. doi:10.1038/nrm301221102609
  • Noriega-GuerraH, FreitasVM. Extracellular matrix influencing HGF/c-MET signaling pathway: impact on cancer progression. Int J Mol Sci. 2018;19:11. doi:10.3390/ijms19113300
  • JarantowSW, BusheyBS, PardinasJR, et al. Impact of cell-surface antigen expression on target engagement and function of an epidermal growth factor receptor x c-MET bispecific antibody. J Biol Chem. 2015;290(41):24689–24704. doi:10.1074/jbc.M115.65165326260789
  • MooresSL, ChiuML, BusheyBS, et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 2016;76(13):3942–3953. doi:10.1158/0008-5472.CAN-15-283327216193
  • HeukersR, AltintasI, RaghoenathS, et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials. 2014;35(1):601–610. doi:10.1016/j.biomaterials.2013.10.00124139763
  • SuZ, HanY, SunQ, et al. Anti-MET VHH pool overcomes MET-targeted cancer therapeutic resistance. Mol Cancer Ther. 2019;18(1):100–111. doi:10.1158/1535-7163.MCT-18-035130361332
  • GherardiE, BirchmeierW, BirchmeierC, Vande WoudeG. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103. doi:10.1038/nrc320522270953
  • RaghavKP, WangW, LiuS, et al. cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res. 2012;18(8):2269–2277. doi:10.1158/1078-0432.CCR-11-283022374333
  • WuL, SeungE, XuL, et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed t cells through t cell receptor co-stimulation. Nature Cancer. 2019;1–13.
  • RozanC, CornillonA, PetiardC, et al. Single-domain antibody-based and linker-free bispecific antibodies targeting FcgammaRIII induce potent antitumor activity without recruiting regulatory T cells. Mol Cancer Ther. 2013;12(8):1481–1491. doi:10.1158/1535-7163.MCT-12-101223757164
  • StockmeyerB, DechantM, van EgmondM, et al. Triggering Fc alpha-receptor I (CD89) recruits neutrophils as effector cells for CD20-directed antibody therapy. J Immunol. 2000;165(10):5954–5961. doi:10.4049/jimmunol.165.10.595411067958
  • LiB, XuL, PiC, et al. CD89-mediated recruitment of macrophages via a bispecific antibody enhances anti-tumor efficacy. Oncoimmunology. 2017;7(1):e1380142. doi:10.1080/2162402X.2017.138014229296544
  • KipriyanovSM, CochloviusB, SchaferHJ, et al. Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J Immunol. 2002;169(1):137–144. doi:10.4049/jimmunol.169.1.13712077238
  • GauthierL, MorelA, AncerizN, et al. Multifunctional natural killer cell engagers targeting nkp46 trigger protective tumor immunity. Cell. 2019;177(7):1701–1713 e1716. doi:10.1016/j.cell.2019.04.04131155232
  • SunX, LiC, WangW, et al. Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma. Am J Cancer Res. 2020;10(2):564–571.32195027
  • MartinV, ChiriacoC, ModicaC, et al. Met inhibition revokes IFNgamma-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120(5):527–536. doi:10.1038/s41416-018-0315-330723303
  • AbikoK, MatsumuraN, HamanishiJ, et al. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112(9):1501–1509. doi:10.1038/bjc.2015.10125867264
  • WooSR, TurnisME, GoldbergMV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–927. doi:10.1158/0008-5472.CAN-11-162022186141
  • ChangCH, WangY, LiR, et al. Combination therapy with bispecific antibodies and PD-1 blockade enhances the antitumor potency of T cells. Cancer Res. 2017;77(19):5384–5394. doi:10.1158/0008-5472.CAN-16-343128819027