110
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Ulinastatin Promotes Regeneration of Peripheral Nerves After Sciatic Nerve Injury by Targeting let-7 microRNAs and Enhancing NGF Expression

, , , & ORCID Icon
Pages 2695-2705 | Published online: 09 Jul 2020

References

  • WillandMP, NguyenMA, BorschelGH, GordonT. Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair. 2016;30(5):490–496. doi:10.1177/154596831560439926359343
  • GuX, DingF, YangY, LiuJ. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93(2):204–230. doi:10.1016/j.pneurobio.2010.11.00221130136
  • RaphaelAR, PerlinJR, TalbotWS. Schwann cells reposition a peripheral nerve to isolate it from postembryonic remodeling of its targets. Development. 2010;137(21):3643–3649. doi:10.1242/dev.05752120876648
  • ChenYY, McDonaldD, ChengC, MagnowskiB, DurandJ, ZochodneDW. Axon and Schwann cell partnership during nerve regrowth. J Neuropathol Exp Neurol. 2005;64(7):613–622. doi:10.1097/01.jnen.0000171650.94341.4616042313
  • AmaniH, KazerooniH, HassanpoorH, AkbarzadehA, Pazoki-ToroudiH. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif Cells Nanomed Biotechnol. 2019;47(1):3524–3539. doi:10.1080/21691401.2019.163972331437011
  • JessenKR, MirskyR. The success and failure of the Schwann cell response to nerve injury. Front Cell Neurosci. 2019;13:33. doi:10.3389/fncel.2019.0003330804758
  • AloeL, RoccoML, BianchiP, ManniL. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med. 2012;10(1):239. doi:10.1186/1479-5876-10-23923190582
  • WoodMD, MacEwanMR, FrenchAR, et al. Fibrin matrices with affinity-based delivery systems and neurotrophic factors promote functional nerve regeneration. Biotechnol Bioeng. 2010;106(6):970–979. doi:10.1002/bit.2276620589674
  • FioreM, MancinelliR, AloeL, et al. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Lett. 2009;188(3):208–213. doi:10.1016/j.toxlet.2009.04.01319397965
  • ManniL, RoccoML, BianchiP, et al. Nerve growth factor: basic studies and possible therapeutic applications. Growth Factors. 2013;31(4):115–122. doi:10.3109/08977194.2013.80407323777359
  • da SilvaJT, SantosFM, GiardiniAC, et al. Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors. 2015;33(1):8–13. doi:10.3109/08977194.2014.95363025489629
  • LiR, WuJ, LinZ, et al. Single injection of a novel nerve growth factor coacervate improves structural and functional regeneration after sciatic nerve injury in adult rats. Exp Neurol. 2017;288:1–10. doi:10.1016/j.expneurol.2016.10.01527983992
  • ShakhbazauA, KawasoeJ, HoyngSA, et al. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci. 2012;50(1):103–112. doi:10.1016/j.mcn.2012.04.00422735691
  • LiuNK, WangXF, LuQB, XuXM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol. 2009;219(2):424–429. doi:10.1016/j.expneurol.2009.06.01519576215
  • EackerSM, DawsonTM, DawsonVL. Understanding microRNAs in neurodegeneration. Nat Rev Neurosci. 2009;10(12):837–841. doi:10.1038/nrn272619904280
  • ZhouN, HaoS, HuangZ, et al. MiR-7 inhibited peripheral nerve injury repair by affecting neural stem cells migration and proliferation through cdc42. Mol Pain. 2018;14:1744806918766793. doi:10.1177/174480691876679329663842
  • ThorntonJE, GregoryRI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22(9):474–482. doi:10.1016/j.tcb.2012.06.00122784697
  • KucherenkoMM, BarthJ, FialaA, ShcherbataHR. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J. 2012;31(24):4511–4523. doi:10.1038/emboj.2012.29823160410
  • LehmannSM, KrugerC, ParkB, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827–835. doi:10.1038/nn.311322610069
  • ZouY, ChiuH, ZinovyevaA, AmbrosV, ChuangCF, ChangC. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science. 2013;340(6130):372–376. doi:10.1126/science.123132123599497
  • TanakaR, FujitaM, TsurutaR, et al. Urinary trypsin inhibitor suppresses excessive generation of superoxide anion radical, systemic inflammation, oxidative stress, and endothelial injury in endotoxemic rats. Inflamm Res. 2010;59(8):597–606. doi:10.1007/s00011-010-0166-820148283
  • WuQ, LiuLT, WangXY, et al. Lycium barbarum polysaccharides attenuate kidney injury in septic rats by regulating Keap1-Nrf2/ARE pathway. Life Sci. 2020;242:117240. doi:10.1016/j.lfs.2019.11724031891722
  • ShuY, YangY, QiuW, et al. Neuroprotection by ulinastatin in experimental autoimmune encephalomyelitis. Neurochem Res. 2011;36(11):1969–1977. doi:10.1007/s11064-011-0520-421667278
  • XieX, LiT, YuanH. Protective effects of Ulinastatin on oxidative stress and inflammation of rat-derived cardiomyocytes H9c2. Am J Transl Res. 2019;11(11):7094–7103.31814912
  • LinY-F, XieZ, ZhouJ, Chen-H-H, Shao-W-W, LinH-D. Effect of exogenous spastin combined with polyethylene glycol on sciatic nerve injury. Neural Regen Res. 2019;14(7):1271–1279. doi:10.4103/1673-5374.25133630804259
  • LiS, WangX, GuY, et al. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther. 2015;23(3):423–433. doi:10.1038/mt.2014.22025394845
  • TaylorCA, BrazaD, RiceJB, DillinghamT. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–385. doi:10.1097/PHM.0b013e31815e637018334923
  • ShawPX, SangA, WangY, et al. Topical administration of a Rock/Net inhibitor promotes retinal ganglion cell survival and axon regeneration after optic nerve injury. Exp Eye Res. 2017;158:33–42. doi:10.1016/j.exer.2016.07.00627443501
  • TamaddonfardE, FarshidAA, SamadiF, EghdamiK. Effect of vitamin B12 on functional recovery and histopathologic changes of tibial nerve-crushed rats. Drug Res. 2014;64(9):470–475. doi:10.1055/s-0033-1363219
  • DaeschlerSC, HarhausL, BergmeisterKD, et al. Clinically available low intensity ultrasound devices do not promote axonal regeneration after peripheral nerve surgery-A preclinical investigation of an FDA-approved device. Front Neurol. 2018;9:1057. doi:10.3389/fneur.2018.0105730564189
  • AtalSS, AtalS. Ulinastatin - a newer potential therapeutic option for multiple organ dysfunction syndrome. J Basic Clin Physiol Pharmacol. 2016;27(2):91–99. doi:10.1515/jbcpp-2015-000326565549
  • ChenP, PiaoX, BonaldoP. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130(5):605–618. doi:10.1007/s00401-015-1482-426419777
  • FlammAG, ŻerkoS, Zawadzka-KazimierczukA, KoźmińskiW, KonratR, CoudevylleN. 1H, 15N, 13C resonance assignment of human GAP-43. Biomol NMR Assign. 2016;10(1):171–174. doi:10.1007/s12104-015-9660-926748655
  • Hung-C-C, LinC-H, ChangH, et al. Astrocytic GAP43 induced by the TLR4/NF-κB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci. 2016;36(6):2027–2043. doi:10.1523/JNEUROSCI.3457-15.201626865625
  • GentilBJ, TibshiraniM, DurhamHD. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res. 2015;360(3):609–620. doi:10.1007/s00441-014-2082-725567110
  • PronkerMF, LemstraS, SnijderJ, et al. Structural basis of myelin-associated glycoprotein adhesion and signalling. Nat Commun. 2016;7(1):13584. doi:10.1038/ncomms1358427922006
  • TaeHJ, RahmanMM, ParkBY. Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus. Gene Expr Patterns. 2015;17(1):26–30. doi:10.1016/j.gep.2015.01.00125616247
  • ZhaoHT, DamleS, Ikeda-LeeK, et al. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J Clin Invest. 2018;128(1):359–368. doi:10.1172/JCI9649929202483
  • QiuJ, YangX, WangL, et al. Isoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. Ann Transl Med. 2019;7(22):680. doi:10.21037/atm.2019.11.1831930081
  • FinebergSK, KosikKS, DavidsonBL. MicroRNAs potentiate neural development. Neuron. 2009;64(3):303–309. doi:10.1016/j.neuron.2009.10.02019914179
  • YoonAR, GaoR, KaulZ, et al. MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3ʹ untranslated region. Nucleic Acids Res. 2011;39(18):8078–8091. doi:10.1093/nar/gkr49221724611
  • LiuX, CuiX, GuanG, DongY, ZhangZ. microRNA-192-5p is involved in nerve repair in rats with peripheral nerve injury by regulating XIAP. Cell Cycle. 2020;19(3):326–338. doi:10.1080/15384101.2019.171091631944167
  • GokbugetD, PereiraJA, BachofnerS, et al. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system. Nat Commun. 2015;6(1):8584. doi:10.1038/ncomms958426466203
  • ShinYK, JangSY, YunSH, et al. Cooperative interaction of hepatocyte growth factor and neuregulin regulates Schwann cell migration and proliferation through Grb2-associated binder-2 in peripheral nerve repair. Glia. 2017;65(11):1794–1808. doi:10.1002/glia.2319528722233
  • LindborgJA, MackM, ZigmondRE. Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration. J Neurosci. 2017;37(43):10258–10277. doi:10.1523/JNEUROSCI.2085-17.201728912156
  • ShiG, ShiJ, LiuK, et al. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia. 2013;61(4):504–512. doi:10.1002/glia.2245123361941
  • KomirishettyP, AretiA, YerraVG, et al. PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci. 2016;150:50–60. doi:10.1016/j.lfs.2016.02.08526921631
  • LanzaC, RaimondoS, VerganiL, et al. Expression of antioxidant molecules after peripheral nerve injury and regeneration. J Neurosci Res. 2012;90(4):842–848. doi:10.1002/jnr.2277822253198
  • WangH, DingXG, LiSW, et al. Role of oxidative stress in surgical cavernous nerve injury in a rat model. J Neurosci Res. 2015;93(6):922–929. doi:10.1002/jnr.2354525597854
  • QianY, HanQ, ZhaoX, et al. 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration. J Pineal Res. 2018;65(4):e12516. doi:10.1111/jpi.1251629935084
  • RennoWM, BenovL, KhanKM. Possible role of antioxidative capacity of (-)-epigallocatechin-3-gallate treatment in morphological and neurobehavioral recovery after sciatic nerve crush injury. J Neurosurg Spine. 2017;27(5):593–613. doi:10.3171/2016.10.SPINE1621828777065