237
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Potential Allylpyrocatechol Derivatives as Antibacterial Agent Against Oral Pathogen of S. sanguinis ATCC 10,556 and as Inhibitor of MurA Enzymes: in vitro and in silico Study

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 2977-2985 | Published online: 27 Jul 2020

References

  • AvilaM, OjciusDM, YilmazÖ. The oral microbiota: living with a permanent guest. DNA Cell Biol. 2009;28(8):405–411. doi:10.1089/dna.2009.087419485767
  • YooS, MurataRM, DuarteS. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. Caries Res. 2011;45:327–335. doi:10.1159/00032918121720161
  • TruperGH, De’clariL. Taxonomic note: necessary correction of specific epithets formed as substantives (Nouns) “in Apposition”. Int J Syst Bacteriol. 1997;47:908–909.
  • XuP, GeX, ChenL, et al. Genome-wide essential gene identification in Streptococcus sanguinis. Sci Rep. 2011;1(125):1–9. doi:10.1038/srep0012522355520
  • ZhuB, MacleodLC, KittenT, et al. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018;13(8):915–932. doi:10.2217/fmb-2018-004329882414
  • MartiniAM, MoriczBS, RippergerAK, et al. Association of novel Streptococcus sanguinis virulence factors with pathogenesis in an native valve infective endocarditis model. Front Microbiol. 2020;11(10):1–15.32082274
  • ZhuB, SongL, KongX, et al. A novel regulator modulates glucan production, cell aggregation and biofilm formation in Streptococcus sanguinis SK36. Front Microbiol. 2018;9(1154):1–14. doi:10.3389/fmicb.2018.0115429403456
  • GrossmanTH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):1–24. doi:10.1101/cshperspect.a025387
  • CegelskiL, MarshallG, EldridgeRG, HultgrenJS. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol. 2008;6:17–27. doi:10.1038/nrmicro181818079741
  • KrašovecR, JermanI. Bacterial multicellularity as a possible source of antibiotic resistance. Med Hypotheses. 2003;60(4):484–488. doi:10.1016/S0306-9877(02)00394-812615504
  • BuggTHD, WalshCT. lntracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep. 1992;9(3):199–215. doi:10.1039/np99209001991436736
  • EpandRM, WalkerC, EpandRF, et al. Molecular mechanism of membrane targeting antibiotics. Biochim Biophys Acta. 2016;1858(5):980–987. doi:10.1016/j.bbamem.2015.10.01826514603
  • DeepakSM, PatilPP, AherSJ, et al. Mur-A: a critical target behind new antibacterial drug discovery. Indo Am J Pharm Res. 2014;4(1):220–225.
  • DevA, AdilMT, KumarP. In silico based approach to identify Mura as a potential drug target for leprosy. Acta Sci Microbiol. 2020;3(3):1–7.
  • SalehiB, SharopovF, MartorellM, et al. Phytochemicals in Helicobacter pylori infections: what are we doing now? Int J Mol Sci. 2018;19(8):2361–2394. doi:10.3390/ijms19082361
  • SalehiB, SenerB, KilicM, et al. Dioscorea plants: a genus rich in vital nutra-pharmaceuticals-A review. Iran J Pharm Res. 2019;18:68–89.
  • AmbrosioSR, FurtadoNAJC, OliveiraDCR, et al. Antimicrobial activity of kaurane diterpenes against oral pathogens. Verlag der Zeitschrift für Naturforsch. 2008;63c:326–330. doi:10.1515/znc-2008-5-603
  • MoonSE, KimHY, ChaJD. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch Oral Biol. 2011;56(9):907–916. doi:10.1016/j.archoralbio.2011.02.00521397894
  • FreiresIA, DennyC, BensoB, et al. Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: a systematic review. Molecules. 2015;20(4):7329–7358. doi:10.3390/molecules2004732925911964
  • ChaJD, JeongMR, JeongSI, et al. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica. Phytother Res. 2007;21(3):295–299. doi:10.1002/ptr.186417236183
  • BernardesWA, LucariniR, TozattiMG, et al. Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Zeitschrift Naturforshung. 2010;65c:588–593.
  • SalehiB, ZakariaZA, GyawaliR, et al. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules. 2019;24(7):1364–1480. doi:10.3390/molecules24071364
  • ChakrabortyD, ShahB. Antimicrobial, anti-oxidative, and anti-Hemolytic activity of Piper betle leaf extracts. Int J Pharm Pharm. 2011;3(3):192–199.
  • PatelN, MohanJSS. Isolation and characterization of potential bioactive compounds from Piper betle varieties Banarasi and Bengali leaf extract. Int J Herb Med. 2017;5(5):182–191.
  • KitchenDB, DecornezH, FurrJR, BajorathJ. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–949. doi:10.1038/nrd154915520816
  • SrinivasanP, ArumugamDS, ManikandanR, ArulvasuC. Molecular docking studies of 1,2 disubstituted idopyranose from Vitex negundo with anti-diabetic activity of type 2 diabetes. Int J Pharma Bio Sci. 2011;2:68–83.
  • SkarzynskiT, MistryA, WonacottA, et al. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure. 1996;4(12):1465–1474. doi:10.1016/S0969-2126(96)00153-08994972
  • Clinical and Laboratory Standards Institute (CLSI - formerly NCCLS). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. 11th ed. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2012.
  • Clinical and Laboratory Standards Institute document M7-A8. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 9th ed. Wayne, PA, USA: Clinical and laboratory standards institute; 2012.
  • BlancoL, GarzaM. Phenol degradation using glassy carbon electrodes modified with particles of Co-Mo alloy. Int J Electrochem Sci. 2013;8:5698–5709.
  • AbdullahNF, AnifahW, HussainRM. Optimized method for purification of allylpyrocatechol from Piper Betle L. ethanolic extract using HPLC and H1-NMR. J Pharm Sci & Res. 2015;7(6):292–301.
  • PandaS, SikdarM, BiswasS, et al. Allylpyrocatechol, isolated from betle leaf Ameliorates thyrotoxicosis in rats by altering thyroid peroxidase and thyrotropin receptors. Sci Rep. 2019;1:1–12.
  • PanX, ChenF, WuT, et al. The acid, bile tolerance, and antimicrobial property of Lactobacillus acidophilus NIT. Food Control. 2009;20(6):598–602. doi:10.1016/j.foodcont.2008.08.019
  • KueteV. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med. 2010;76(14):1479–1491. doi:10.1055/s-0030-125002720533165
  • KurniaD, ApriyantiE, SorayaC, SatariMH. Antibacterial flavonoids against oral bacteria of Enterococcus faecalis ATCC 29212 from Sarang Semut (Myrmecodia pendans) and its inhibitor activity against enzyme MurA. Curr Drug Discov Technol. 2019;16(3):290–296. doi:10.2174/157016381566618082811392030152286
  • NagoriK, SinghM, AlexanderA, et al. Piper betle L.: a review on its ethnobotany, phytochemistry, pharmacological profile and profiling by new hyphenated technique DART-MS (Direct Analysis in Real Time Mass Spectrometry). J Pharm Res. 2011;4:2991–2997.
  • NalinaT, RahimZHA. The crude aqueous extract of Piper betle L. and its antibacterial effect towards Streptococcus mutans. Am J Biochem Biotechnol. 2007;3(1):10–15. doi:10.3844/ajbbsp.2007.10.15
  • AliI, KhanFG, SuriKA, et al. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann Clin Microbiol Antimicrob. 2010;9(7):1–9. doi:10.1186/1476-0711-9-720067633
  • KhanS, SinghS, GaikwadS, et al. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their anti-phytofungal activity. Environ Sci Pollut Res. 2019. doi:10.1007/s11356-019-05239-2
  • SarkarD, SahaP, GamreS, et al. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-κB pathway. Int Immunopharmacol. 2008;8:1264–1271. doi:10.1016/j.intimp.2008.05.00318602073
  • BauriAK, BrodiePJ, KingstonDGI. Anti-proliferative allylic phenols from the methanol extract of Piper betle. Am J Pharm Pharmacol. 2018;5(3):13–18.
  • ChakrabortyJB, MahatoSK, JoshiK, et al. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Sci. 2012;103(1):88–99. doi:10.1111/j.1349-7006.2011.02107.x21943109
  • NishiwakiK, OhigashiK, DeguchiT, et al. Structure-activity relationships and docking studies of hydroxychavicol and its analogs as xanthine oxidase inhibitors. Chem Pharm Bull. 2018;66:741–747. doi:10.1248/cpb.c18-0019729695658
  • AbrahimNN, KanthimathiMS, Abdul-AzizA. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation, and increases activities of catalase and superoxide dismutase. BMC Complement Altern Med. 2012;12:220. doi:10.1186/1472-6882-12-22023153283
  • SarkarD, KunduS, DeS, et al. The antioxidant activity of allylpyrocatechol is mediated via decreased generation of free radicals along with escalation of antioxidant mechanisms. Phytother. Res. 2013;27:324–329. doi:10.1002/ptr.472022585425
  • AbdullahNF, HussainRM. Isolation of allylpyrocatechol from Piper betle L. leaves by using high-performance liquid chromatography. J Liq Chromatogr Relat Technol. 2015;38(2):289–293. doi:10.1080/10826076.2014.908782
  • Medina-FloresD, Ulloa-UrizarG, Camere-ColarossiR, et al. Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac J Trop Biomed. 2016;6(5):400–403. doi:10.1016/j.apjtb.2016.03.005
  • AbdullahNF, HussainRM, AmomZ. Effect of APC on killing of Staphylococcus aureus by oxidative stress agents. Jurnal Teknologi. 2015;78(5):39–44.
  • GuptaA, ChaudharyN, KakularamKR, et al. The augmenting effects of desolvation and conformational energy terms on the predictions of docking programs against mPGES-1. PLoS One. 2015;10(8):1–16. doi:10.1371/journal.pone.0134472
  • SyahputraG, AmbarsariL, SumaryadaT. Simulasi docking kurkumin enol, bismetoksikurkumin dan analognya sebagai inhibitor enzim1,2-lipoksigenase. J Biofisika. 2014;10(1):55–67.