157
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Antibacterial of Dibenzo-p-Dioxi-2,8-Dicarboxylic Acid Against Pathogenic Oral Bacteria E. faecalis ATCC 29212 Peptide Pheromones: Quorum Sensing of in vitro and in silico Study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3079-3086 | Published online: 30 Jul 2020

References

  • VeigaN, AiresD, DouglasF, et al. Dental caries: a review. J Dent Oral Health. 2016;2(5):1–3.
  • WangQQ, ZhangCF, ChuCH, et al. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int J Oral Sci. 2012;4(1):19–23. doi:10.1038/ijos.2012.1722422085
  • E YK, LapesqueurLSS, YassudaCG, et al. Enterococcus species in the oral cavity: prevalence, virulence factors, and antimicrobial susceptibility. PLoS One. 2016;11(9):1–11.
  • FlananganD. Enterococcus faecalis and dental implants. J Oral Implantol. 2017;43(1):8–11. doi:10.1563/aaid-joi-D-16-0006927700696
  • TyneDV, MartinMJ, GilmoreMS. Virulence effect of Enterococcus faecalis structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins. 2013;5(5):895–911. doi:10.3390/toxins505089523628786
  • GolobM, PeteM, KusarD, et al. Antimicrobial resistance and virulence genes in Enterococcus faecium and Enterococcus faecalis from humans and retail red meat. Biomed Res Int. 2019;2019:1–12. doi:10.1155/2019/2815279
  • SeethalerM, HertleinT, WeckleinB, et al. Novel small-molecule antibacterial against Gram-positive pathogens of Staphylococcus and Enterococcus species. Antibiotics. 2019;8(4):1–9. doi:10.3390/antibiotics8040210
  • UsaiD, DonaduM, BuaA, et al. Enhancement of antimicrobial activity of pump inhibitors associating drugs. J Infect Dev Ctries. 2019;13(2):162–164. doi:10.3855/jidc.1110232036352
  • TangYT, MarshallGR. Virtual screening for lead discovery In: SatyanarayanajoisSD, editor. Drug Design and Discovery: Method and Protocols. New York: Springer Science; 2011:1–22.
  • ShenJ, XuX, ChengF, et al. Virtual screening on natural products for discovering active compound and target information. Curr Med Chem. 2003;10(21):2327–2342. doi:10.2174/092986703345672914529345
  • LavecchiaA, GiovanniCD. Virtual screening strategies in drug discovery: A critical review. Curr Med Chem. 2013;20(23):2839–2860. doi:10.2174/0929867311320999000123651302
  • AliL, GorayaMU, ArafatY, et al. Molecular mechanism of quorum-sensing in Enterococcus faecalis: its role in virulence and therapeutic approaches. Int J Mol Sci. 2017;18(5):1–19. doi:10.3390/ijms18050960
  • JiangQ, ChenJ, YangC, et al. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:1–15.
  • CookLC, FederleMJ. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Ecol. 2014;38(3):473–492.
  • ChenY, BandyopadhyayA, KozlowiczBK. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis. Microbiology Open. 2017;6(4):1–13. doi:10.1002/mbo3.492
  • AntiportaMH, DunnyGM. CcfA, The genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J Bacteriol. 2002;184(4):1155–1162. doi:10.1128/jb.184.4.1155-1162.200211807076
  • ShiK, BrownCK, GuZY, et al. Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proceedings of the National Academy of Sciences. 2005;102(51):18596–18601. doi:10.1073/pnas.0506163102
  • EstardaJR, DiezAE, GuarnerosG, et al. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol. 2010;87(3):913–923. doi:10.1007/s00253-010-2651-y20502894
  • KozlowiczBK, ShiK, GuYZ, et al. Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol. 2006;62(4):1–19. doi:10.1111/j.1365-2958.2006.05434.x16987172
  • ThomfordNE, SenthebaneDA, RoweA, et al. Natural product for drug discover in the 21st century: innovetions for novel drug discovery. Int J Mol Sci. 2018;19(6):1–29. doi:10.3390/ijms19061578
  • LeNT, HoDV, DoanTQ, et al. In vitro antimicrobial activity of essential oil extracted from leaves of Leoheo domatiophorus chaowasku, D.T. Ngo and H.T. Le in Vietnam. Plants. 2020;453(9):1–14.
  • LeNT, HoDV, DoanTQ, et al. Biological activities of essential oil from leave of Paramigya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics. 2020;207(9):1–12.
  • BuaA, UsaiD, DonaduMG, et al. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organism. Nat Prod Res. 2018;23(32):2869–2871.
  • BashariMH, HidayatS, RuswandiYAR, et al. The n-hexane fraction of Myrmecodia pendans inhibits cell survival and poliferation in colon cancer cell line. Int J Pharm Pharm Sci. 2018;10(1):108–112. doi:10.22159/ijpps.2018v10i1.21882
  • GartikaM, PramestiHT, KurniaD, et al. A terpenoid isolated from Sarang Semut (Myrmecodia pendans) bulb and it’s potential for the inhibition and eradication of Streptococcus mutans biofilm. BMC Complement Altern Med. 2018;18(151):1–8. doi:10.1186/s12906-018-2213-x29295712
  • SudionoJ, OkaCT, TrisfilhaP. The scientific base of Myrcomedia pendans as herbal remedies. Br J Med Med Res. 2015;8(3):230–237. doi:10.9734/BJMMR/2015/17465
  • GartikaAM, Wartadewi, MariamMS, et al. Antibacterial of terpenoid A from Sarang Semut (Myrmrcodia pendans) against Streptococcus mutans. Int J Chemtech Res. 2018;11(1):228–233.
  • EngidaAM, FaikaS, ThiBTN, et al. Analysis of major antioxidants from extracts of Myrmecodia pendans by UV/visible spectrophotometer, liquid chromatography/tandem mass spectrometry, and high-performance liquid chromatography/UV techniques. J Food Drug Anal. 2015;23(2):303–309. doi:10.1016/j.jfda.2014.07.00528911386
  • PimiaRH, NohynekL, MeierC, et al. Antimicrobial properties of phenolic compounds from Berries. J Appl Microbiol. 2001;90(4):494–507. doi:10.1046/j.1365-2672.2001.01271.x11309059
  • KurniaD, SumiarsaD, DharsonoHAD, et al. Bioactive compound isolated from Indonesian epiphytic plan of Sarang Semut and their antibacterial activity against pathogenic oral bacteria. Nat Prod Commun. 2017;12(8):1201–1204. doi:10.1177/1934578X1701200814
  • SelvarajC, SivakamavalliJ, VaseeharanB, et al. Structural elucidation of SrtA enzyme in Enterococcus faecalis: an emphasis on screening of potential inhibitors against the biofilm formation. Mol Biosyst. 2014;10(7):1775–1789. doi:10.1039/C3MB70613C24718729
  • IhlenfeldtWD, BoltonEE, BryantSH. The PubChem chemical structure sketcher. J Cheminformat. 2009;1(20):1–9. doi:10.1186/1758-2946-1-20
  • O’BoyleNM, BanckM, JamesCA, et al. Open babel: an open chemical toolbox. J Cheminform. 2011;3(33):1–14. doi:10.1186/1758-2946-3-121214931
  • WaterhouseA, BertoniM, BienertS, et al. Sarang Semut (Myrmrcodia pendans) against Streptococcus mutans. Int J Chemtech Res. 2018;11(1):228–233.
  • DallakyanS, OslonAJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–250.25618350
  • AzamSS, AbbasiSW. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model. 2013;10(63):1–16.23276293
  • DeLanoWL, BrombergS. Pymol User’s Guide. USA: DeLano Scientific LLC; 2004.
  • RaufMA, ZubairS, AzharA. Ligand docking and binding site analysis with Pymol and Autodock/Vina. Int J Basic Appl Sci. 2015;4(2):168–177. doi:10.14419/ijbas.v4i2.4123
  • ChandlerJR, HirtH, DunnyGM. A paracrine peptide sex pheromone also act as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo. Proc Natl Acad Sci. 2005;102(43):15617–15622. doi:10.1073/pnas.050554510216223881
  • VaradwajPK, LahiriT. Functional group based ligand binding affinity scoring function at atomic enviromental level. Bioinformation. 2009;3(6):268–274. doi:10.6026/9732063000326819255647
  • KaushikAC, KumarS, WeiDQ, et al. Structure based virtual screening studies to identify novel potential compound for GPR142and their relative dynamic analysis for study of type 2 diabetes. Front Chem. 2018;6(23):1–14. doi:10.3389/fchem.2018.0002329441345
  • NakayamaJ, OnoY, SuzukiA. Isolation and structure of the sex pheromone inhibitor, iAM373, of Enterococcus faecalis. Biosci Biotech Biochem. 1995;59(7):1358–1359. doi:10.1271/bbb.59.1358
  • EkinsS, MestresJ, TestaB. In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol. 2007;152(1):21–37. doi:10.1038/sj.bjp.070730617549046