310
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Effects of Voriconazole on the Pharmacokinetics of Vonoprazan in Rats

, , ORCID Icon, , , , , , & show all
Pages 2199-2206 | Published online: 04 Jun 2020

References

  • MermelsteinJ, MermelsteinAC, ChaitMM. Proton pump inhibitors for the treatment of patients with erosive esophagitis and gastroesophageal reflux disease: current evidence and safety of dexlansoprazole. Clin Exp Gastroenterol. 2016;9:163–172. doi:10.2147/CEG.S9160227471402
  • SavarinoV, MarabottoE, ZentilinP, et al. The appropriate use of proton-pump inhibitors. Minerva Med. 2018;109(5):386–399. doi:10.23736/S0026-4806.18.05705-129856192
  • SavarinoV, MarabottoE, ZentilinP, et al. Proton pump inhibitors: use and misuse in the clinical setting. Expert Rev Clin Pharmacol. 2018;11(11):1123–1134. doi:10.1080/17512433.2018.153170330295105
  • El RoubyN, LimaJJ, JohnsonJA. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin Drug Metab Toxicol. 2018;14(4):447–460. doi:10.1080/17425255.2018.146183529620484
  • KangH, KimBJ, ChoiG, KimJG. Vonoprazan versus proton pump inhibitors for the management of gastroesophageal reflux disease: a protocol for a systematic review with meta-analysis. Medicine (Baltimore). 2018;97(39):e12574. doi:10.1097/MD.000000000001257430278564
  • Garnock-JonesKP. Vonoprazan: first global approval. Drugs. 2015;75(4):439–443. doi:10.1007/s40265-015-0368-z25744862
  • ShinJM, InatomiN, MunsonK, et al. Characterization of a novel potassium-competitive acid blocker of the gastric H,K-ATPase, 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamin e monofumarate (TAK-438). J Pharmacol Exp Ther. 2011;339(2):412–420. doi:10.1124/jpet.111.18531421828261
  • EchizenH. The first-in-class potassium-competitive acid blocker, vonoprazan fumarate: pharmacokinetic and pharmacodynamic considerations. Clin Pharmacokinet. 2016;55(4):409–418. doi:10.1007/s40262-015-0326-726369775
  • AshidaK, SakuraiY, HoriT, et al. Randomised clinical trial: vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the healing of erosive oesophagitis. Aliment Pharmacol Ther. 2016;43(2):240–251. doi:10.1111/apt.1346126559637
  • AshidaK, SakuraiY, NishimuraA, et al. Randomised clinical trial: a dose-ranging study of vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the treatment of erosive oesophagitis. Aliment Pharmacol Ther. 2015;42(6):685–695. doi:10.1111/apt.1333126201312
  • YamasakiH, KawaguchiN, NonakaM, et al. In vitro metabolism of TAK-438, vonoprazan fumarate, a novel potassium-competitive acid blocker. Xenobiotica. 2017;47(12):1027–1034. doi:10.1080/00498254.2016.120350527414183
  • YoneyamaT, TeshimaK, JinnoF, KondoT, AsahiS. A validated simultaneous quantification method for vonoprazan (TAK-438F) and its 4 metabolites in human plasma by the liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1015(2016):42–49. doi:10.1016/j.jchromb.2016.01.051
  • KogameA, TakeuchiT, NonakaM, et al. Disposition and metabolism of TAK-438 (vonoprazan fumarate), a novel potassium-competitive acid blocker, in rats and dogs. Xenobiotica. 2017;47(3):255–266. doi:10.1080/00498254.2016.118266727225050
  • MangalN, HamadehIS, ArwoodMJ, et al. Optimization of voriconazole therapy for the treatment of invasive fungal infections in adults. Clin Pharmacol Ther. 2018;104(5):957–965. doi:10.1002/cpt.101229315506
  • LinXB, LiZW, YanM, et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 2018;84(7):1587–1597. doi:10.1111/bcp.1359529607533
  • DriscollTA, FrangoulH, NemecekER, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised adolescents and healthy adults. Antimicrob Agents Chemother. 2011;55(12):5780–5789. doi:10.1128/AAC.05010-1121911570
  • GrünB, KrautterS, RiedelKD, MikusG. Inhibition of the active principle of the weak opioid tilidine by the triazole antifungal voriconazole. Br J Clin Pharmacol. 2009;68(5):712–720. doi:10.1111/j.1365-2125.2009.03498.x19916995
  • ScholzI, OberwittlerH, RiedelKD, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68(6):906–915. doi:10.1111/j.1365-2125.2009.03534.x20002085
  • OhbuchiM, YoshinariK, KanekoH, et al. Coordinated roles of pregnane X receptor and constitutive androstane receptor in autoinduction of voriconazole metabolism in mice. Antimicrob Agents Chemother. 2013;57(3):1332–1338. doi:10.1128/AAC.01900-1223274663
  • FihlmanM, HemmilaT, HagelbergNM, et al. Voriconazole greatly increases the exposure to oral buprenorphine. Eur J Clin Pharmacol. 2018;74(12):1615–1622. doi:10.1007/s00228-018-2548-830167757
  • YasuT, KonumaT, KatoS, KurokawaY, TakahashiS, TojoA. Different effects of lansoprazole and rabeprazole on the plasma voriconazole trough levels in allogeneic hematopoietic cell transplant recipients. Ann Hematol. 2016;95(11):1845–1851. doi:10.1007/s00277-016-2782-z27535751
  • QiF, ZhuL, LiN, GeT, XuG, LiaoS. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2017;49(4):403–409. doi:10.1016/j.ijantimicag.2016.11.02528159656
  • YanM, WuZF, TangD, et al. The impact of proton pump inhibitors on the pharmacokinetics of voriconazole in vitro and in vivo. Biomed Pharmacother. 2018;108:60–64. doi:10.1016/j.biopha.2018.08.12130216801
  • NieceKL, BoydNK, AkersKS. In vitro study of the variable effects of proton pump inhibitors on voriconazole. Antimicrob Agents Chemother. 2015;59(9):5548–5554. doi:10.1128/AAC.00884-1526124167
  • WoodN, TanK, PurkinsL, et al. Effect of omeprazole on the steady-state pharmacokinetics of voriconazole. Br J Clin Pharmacol. 2003;56:56–61. doi:10.1046/j.1365-2125.2003.02000.x14616415
  • DaiDP, WangSH, GengPW, HuGX, CaiJP. In vitro assessment of 36 CYP2C9 allelic isoforms found in the Chinese population on the metabolism of glimepiride. Basic Clin Pharmacol Toxicol. 2014;114(4):305–310. doi:10.1111/bcpt.1215924118918
  • DaiDP, WangSH, LiCB, et al. Identification and functional assessment of a new CYP2C9 allelic variant CYP2C9*59. Drug Metab Dispos. 2015;43(8):1246–1249. doi:10.1124/dmd.115.06341225994031
  • DaiDP, WangYH, WangSH, et al. In vitro functional characterization of 37 CYP2C9 allelic isoforms found in Chinese Han population. Acta Pharmacol Sin. 2013;34(11):1449–1456. doi:10.1038/aps.2013.12324077631
  • Al-GhobashyMA, KamalSM, El-SayedGM, et al. Determination of voriconazole and co-administered drugs in plasma of pediatric cancer patients using UPLC-MS/MS: A key step towards personalized therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1092:489–498. doi:10.1016/j.jchromb.2018.06.043
  • WangSH, DongYW, SuK, et al. Effect of codeine on CYP450 isoform activity of rats. Pharm Biol. 2017;55(1):1223–1227. doi:10.1080/13880209.2017.129746628253826
  • WangSH, WangZY, ChenDX, et al. Effect of acute paraquat poisoning on CYP450 isoforms activity in rats by cocktail method. Int J Clin Exp Med. 2015;8(10):19100–19106.26770539
  • WangS, ZhangZ, YuZ, HanC, WangX. Pharmacokinetic study of delavinone in mice after intravenous and oral administration by UPLC-MS/MS. Biomed Res Int. 2019;2019:3163218.31016188
  • LinG, WangC, QiuX, et al. Differential effects of ketoconazole, itraconazole and voriconazole on the pharmacokinetics of imatinib and its main metabolite GCP74588 in rat. Drug Dev Ind Pharm. 2014;40(12):1616–1622. doi:10.3109/03639045.2013.83858224053419
  • EggerSS, MeierS, LeuC, et al. Drug interactions and adverse events associated with antimycotic drugs used for invasive aspergillosis in hematopoietic SCT. Bone Marrow Transplant. 2010;45(7):1197–1203. doi:10.1038/bmt.2009.32519946342
  • JenkinsH, JenkinsR, PatatA. Effect of multiple oral doses of the potent CYP3A4 inhibitor clarithromycin on the pharmacokinetics of a single oral dose of vonoprazan: a Phase I, open-label, sequential design study. Clin Drug Investig. 2017;37(3):311–316. doi:10.1007/s40261-016-0488-6
  • SunM, TangY, DingT, LiuM, WangX. Inhibitory effects of celastrol on rat liver cytochrome P450 1A2, 2C11, 2D6, 2E1 and 3A2 activity. Fitoterapia. 2014;92:1–8. doi:10.1016/j.fitote.2013.10.00424144799
  • KagamiT, YamadeM, SuzukiT, et al. Comparative study of effects of vonoprazan and esomeprazole on antiplatelet function of clopidogrel or prasugrel in relation to CYP2C19 genotype. Clin Pharmacol Ther. 2018;103(5):906–913. doi:10.1002/cpt.86328875498
  • NishiharaM. Inhibitory effect of vonoprazan on the metabolism of [(14)C]prasugrel in human liver microsomes. Eur J Drug Metab Pharmacokinet. 2019;44(5):713–717. doi:10.1007/s13318-019-00554-y30993551
  • NishiharaM, YamasakiH, CzerniakR, JenkinsH. In vitro assessment of potential for CYP-inhibition-based drug-drug interaction between vonoprazan and clopidogrel. Eur J Drug Metab Pharmacokinet. 2019;44(2):217–227. doi:10.1007/s13318-018-0521-730361928
  • YasumuroO, UchidaS, KashiwaguraY, et al. Changes in gefitinib, erlotinib and osimertinib pharmacokinetics under various gastric pH levels following oral administration of omeprazole and vonoprazan in rats. Xenobiotica. 2018;48(11):1106–1112. doi:10.1080/00498254.2017.139637929057719
  • HiraiA, TakeuchiT, TakahashiY, et al. Comparison of the effects of vonoprazan and lansoprazole for treating endoscopic submucosal dissection-induced artificial ulcers. Dig Dis Sci. 2018;63(4):974–981. doi:10.1007/s10620-018-4948-029464587
  • MiwaH, UedoN, WatariJ, et al. Randomised clinical trial: efficacy and safety of vonoprazan vs. lansoprazole in patients with gastric or duodenal ulcers–results from two Phase 3, non-inferiority randomised controlled trials. Aliment Pharmacol Ther. 2017;45(2):240–252. doi:10.1111/apt.1387627891632
  • MurakamiK, SakuraiY, ShiinoM, FunaoN, NishimuraA, AsakaM. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a Phase III, randomised, double-blind study. Gut. 2016;65(9):1439–1446. doi:10.1136/gutjnl-2015-31130426935876