109
Views
3
CrossRef citations to date
0
Altmetric
Review

Translational Regulation in Hepatocellular Carcinogenesis

, &
Pages 4359-4369 | Published online: 14 Oct 2021

References

  • SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;1–41. doi:10.3322/caac.21660.
  • FitzmauriceC, AkinyemijuTF, Al LamiFH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study global burden of disease study. JAMA Oncol. 2018;4(11):1553–1568. doi:10.1001/jamaoncol.2018.270629860482
  • LiberalR, GrantCR. Cirrhosis and autoimmune liver disease: current understanding. World J Hepatol. 2016;8(28):1157–1168. doi:10.4254/wjh.v8.i28.115727729952
  • SchlesingerS, AleksandrovaK, PischonT, et al. Diabetes mellitus, insulin treatment, diabetes duration, and risk of biliary tract cancer and hepatocellular carcinoma in a European Cohort. Ann Oncol. 2013;24(9):2449–2455. doi:10.1093/annonc/mdt20423720454
  • HuangY-K, QiuF. Current perspectives of recurrence and progression in hepatocellular carcinoma. J Xiangya Med. 2017;2(9):68. doi:10.21037/jxym.2017.09.01
  • HoyosS, EscobarJ, CardonaD, et al. Factors associated with recurrence and survival in liver transplant patients with HCC - A single center retrospective study. Ann Hepatol. 2015;14(1):58–63. doi:10.1016/s1665-2681(19)30801-425536642
  • ChiangDY, VillanuevaA, HoshidaY, et al. Focal gains of vascular endothelial growth factor A and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68(16):6779–6788. doi:10.1158/0008-5472.CAN-08-0742.Focal18701503
  • YangC, HuangX, LiuZ, QinW, WangC. Metabolism-associated molecular classification of hepatocellular carcinoma. Mol Oncol. 2020;14(4):896–913. doi:10.1002/1878-0261.1263931955511
  • FornerA, ReigM, BruixJ. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–1314. doi:10.1016/S0140-6736(18)30010-229307467
  • LlovetJM, RealMI, MontañaX, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–1739. doi:10.1016/S0140-6736(02)08649-X12049862
  • BruixJ, ShermanM. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–1022. doi:10.1002/hep.2419921374666
  • QuetglasIM, MoeiniA, PinyolR, LlovetJM. Integration of genomic information in the clinical management of HCC. Best Pract Res Clin Gastroenterol. 2014;28(5):831–842. doi:10.1016/j.bpg.2014.08.00425260311
  • PsyrriA, ArkadopoulosN, VassilakopoulouM, SmyrniotisV, DimitriadisG. Pathways and targets in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2012;12(10):1347–1357. doi:10.1586/era.12.11323176622
  • DimriM, SatyanarayanaA. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel). 2020;12(2):491. doi:10.3390/cancers12020491
  • MatterMS, DecaensT, AndersenJB, ThorgeirssonSS. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol. 2014;60(4):855–865. doi:10.1016/j.jhep.2013.11.031.Targeting24308993
  • XieJ, WangX, ProudCG. mTOR inhibitors in cancer therapy. F1000Research. 2016;5:2078. doi:10.12688/f1000research.9207.1
  • AliMU, Ur RahmanMS, JiaZ, JiangC. Eukaryotic translation initiation factors and cancer. Tumor Biol. 2017;39(6):101042831770980. doi:10.1177/1010428317709805
  • SpilkaR, ErnstC, MehtaAK, HaybaeckJ. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. 2013;340(1):9–21. doi:10.1016/j.canlet.2013.06.01923830805
  • VoorheesRM, RamakrishnanV. Structural basis of the translational elongation cycle. Annu Rev Biochem. 2013;82:203–236. doi:10.1146/annurev-biochem-113009-09231323746255
  • KappLD, LorschJR. The molecular mechanics of eukaryotic translation. Ann Rev Biochem. 2004;73:657–704. doi:10.1146/annurev.biochem.73.030403.08041915189156
  • BhatM, RobichaudN, HuleaL, SonenbergN, PelletierJ, TopisirovicI. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015;14(4):261–278. doi:10.1038/nrd450525743081
  • SahinF, KannangaiR, AdegbolaO, WangJ, SuG, TorbensonM. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10(24):8421–8425. doi:10.1158/1078-0432.CCR-04-094115623621
  • LuX, PaliogiannisP, CalvisiDF, ChenX. Role of the mammalian target of rapamycin pathway in liver cancer: from molecular genetics to targeted therapies. Hepatology. 2021;73(S1):49–61. doi:10.1002/hep.3131032394479
  • GuriY, ColombiM, DazertE, et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 2017;32(6):807–823.e12. doi:10.1016/j.ccell.2017.11.01129232555
  • ByrneCD, TargherG. NAFLD: a multisystem disease. J Hepatol. 2015;62(1):S47–S64. doi:10.1016/j.jhep.2014.12.01225920090
  • FriedmanSL, Neuschwander-TetriBA, RinellaM, SanyalAJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24. doi:10.1038/s41591-018-0104-9
  • LallyJSV, GhoshalS, DeperaltaDK, et al. Inhibition of acetyl-CoA carboxylase (ACC) by phosphorylation or by the liver-specific inhibitor, ND-654, suppresses lipogenesis and hepatocellular carcinoma. Cell Metabol. 2019;29(1):174–182. DOI:10.1016/j.cmet.2018.08.020.Inhibition
  • ChenH, ShenF, SherbanA, et al. DEPTOR suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease. Hepatology. 2018;68(2):496–514. doi:10.1002/hep.2984929457836
  • CeniE, MelloT, GalliA. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol. 2014;20(47):17756–17772. doi:10.3748/wjg.v20.i47.1775625548474
  • SidB, VerraxJ, CalderonPB. Role of AMPK activation in oxidative cell damage: implications for alcohol-induced liver disease. Biochem Pharmacol. 2013;86(2):200–209. doi:10.1016/j.bcp.2013.05.00723688501
  • XieG, WangX, HuangF, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer. 2016;139(8):1764–1775. doi:10.1002/ijc.3021927273788
  • RobertsLO, JoplingCL, JacksonRJ, WillisAE. Viral strategies to subvert the mammalian translation machinery. Prog Mol Biol Transl Sci. 2009;90(C):313–367. doi:10.1016/S1877-1173(09)90009-620374746
  • CoorayS. The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol. 2004;85(5):1065–1076. doi:10.1099/vir.0.19771-015105524
  • StreetA, MacdonaldA, McCormickC, HarrisM. Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular β-catenin and stimulation of β-catenin-responsive transcription. J Virol. 2005;79(8):5006–5016. doi:10.1128/jvi.79.8.5006-5016.200515795286
  • StreetA, MacdonaldA, CrowderK, HarrisM. The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem. 2004;279(13):12232–12241. doi:10.1074/jbc.M31224520014709551
  • XiangK, WangB. Role of the PI3K-AKT-mTOR pathway in hepatitis B virus infection and replication. Mol Med Rep. 2018;17(3):4713–4719. doi:10.3892/mmr.2018.839529328380
  • NeuveutC, WeiY, BuendiaMA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52(4):594–604. doi:10.1016/j.jhep.2009.10.03320185200
  • WangP, GuoQS, WangZW, QianHX. HBx induces HepG-2 cells autophagy through PI3K/Akt-mTOR pathway. Mol Cell Biochem. 2013;372(1–2):161–168. doi:10.1007/s11010-012-1457-x23001846
  • GuoH, ZhouT, JiangD, et al. Regulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-Akt signal transduction pathway. J Virol. 2007;81(18):10072–10080. doi:10.1128/jvi.00541-0717609269
  • WangXL, CaiHP, GeJH, SuXF. Detection of eukaryotic translation initiation factor 4E and its clinical significance in hepatocellular carcinoma. World J Gastroenterol. 2012;18(20):2540–2544. doi:10.3748/wjg.v18.i20.254022654452
  • Golob-SchwarzlN, KrassnigS, ToeglhoferAM, et al. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer. 2017;83:56–70. doi:10.1016/j.ejca.2017.06.00328715695
  • SilveraD, FormentiSC, SchneiderRJ. Translational control in cancer. Nat Rev Cancer. 2010;10(4):254–266. doi:10.1038/nrc282420332778
  • WangYW, LinKT, ChenSC, et al. Overexpressed-eIF3I interacted and activated oncogenic Akt1 is a theranostic target in human hepatocellular carcinoma. Hepatology. 2013;58(1):239–250. doi:10.1002/hep.2635223460382
  • ZhangL, ChenY, BaoC, ZhangX, LiH. Eukaryotic initiation Factor 4AIII facilitates hepatocellular carcinoma cell proliferation, migration, and epithelial-mesenchymal transition process via antagonistically binding to WD repeat domain 66 with miRNA-2113. J Cell Physiol. 2020;235(11):8199–8209. doi:10.1002/jcp.2947531975383
  • AhmedCS, WinlowPL, ParsonsAL, JoplingCL. Eukaryotic translation initiation factor 4AII contributes to microRNA-122 regulation of hepatitis C virus replication. Nucleic Acids Res. 2018;46(12):6330–6343. doi:10.1093/nar/gky26229669014
  • LiuY, SunL, SuX, GuoS. Inhibition of eukaryotic initiation factor 4E phosphorylation by cercosporamide selectively suppresses angiogenesis, growth and survival of human hepatocellular carcinoma. Biomed Pharmacother. 2016;84:237–243. doi:10.1016/j.biopha.2016.09.03827662474
  • FangC, XieH, ZhaoJ, et al. eIF4E-eIF4G complex inhibition synergistically enhances the effect of sorafenib in hepatocellular carcinoma. Anti Cancer Drugs. 2021;1–7. doi:10.1097/CAD.000000000000107432932275
  • LeeNP, TsangFH, ShekFH, et al. Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer. 2010;127(4):968–976. doi:10.1002/ijc.2510019998337
  • ShekFH, FatimaS, LeeNP. Implications of the use of eukaryotic translation initiation factor 5A (eIF5A) for prognosis and treatment of hepatocellular carcinoma. Int J Hepatol. 2012;2012:1–6. doi:10.1155/2012/760928
  • LouB, FanJ, WangK, et al. N1-guanyl-1,7-diaminoheptane (GC7) enhances the therapeutic efficacy of doxorubicin by inhibiting activation of eukaryotic translation initiation factor 5A2 (eIF5A2) and preventing the epithelial-mesenchymal transition in hepatocellular carcinoma cells. Exp Cell Res. 2013;319(17):2708–2717. doi:10.1016/j.yexcr.2013.08.01023958463
  • TangY, ChenK, LuanX, et al. Knockdown of eukaryotic translation initiation factor 5A2 enhances the therapeutic efficiency of doxorubicin in hepatocellular carcinoma cells by triggering lethal autophagy. Int J Oncol. 2020;57(6):1368–1380. doi:10.3892/ijo.2020.514333174013
  • CaoTT, LinSH, FuL, et al. Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells. Carcinogenesis. 2017;38(1):94–104. doi:10.1093/carcin/bgw11927879277
  • LiuRR, LvYS, TangYX, et al. Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species. Oncotarget. 2016;7(17):24348–24360. doi:10.18632/oncotarget.832427028999
  • TangDJ, DongSS, MaNF, et al. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology. 2010;51(4):1255–1263. doi:10.1002/hep.2345120112425
  • WangZG, ZhengH, GaoW, et al. eIF5B increases ASAP1 expression to promote HCC proliferation and invasion. Oncotarget. 2016;7(38):62327–62339. doi:10.18632/oncotarget.1146927694689
  • LiuZ, MoH, SunL, et al. Long noncoding RNA PICSAR/miR-588/EIF6 axis regulates tumorigenesis of hepatocellular carcinoma by activating PI3K/AKT/mTOR signaling pathway. Cancer Sci. 2020;111(11):4118–4128. doi:10.1111/cas.1463132860321
  • HuangJ, ZhengC, ShaoJ, ChenL, LiuX, ShaoJ. Overexpression of eEF1A1 regulates G1-phase progression to promote HCC proliferation through the STAT1-cyclin D1 pathway. Biochem Biophys Res Commun. 2017;494(3–4):542–549. doi:10.1016/j.bbrc.2017.10.11629079187
  • GrassiG, ScaggianteB, FarraR, et al. The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie. 2007;89(12):1544–1552. doi:10.1016/j.biochi.2007.07.00717825975
  • ZhouY, LiY, XuS, et al. Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinoma via PI3K/Akt and STAT3. Int J Cancer. 2020;146(5):1383–1395. doi:10.1002/ijc.3256031286509
  • PottLL, HagemannS, ReisH, et al. Eukaryotic elongation factor 2 is a prognostic marker and its kinase a potential therapeutic target in HCC. Oncotarget. 2017;8(7):11950–11962. doi:10.18632/oncotarget.1444728060762
  • GordanJD, KennedyEB, Abou-AlfaGK, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J Clin Oncol. 2020;38(36):4317–4345. doi:10.1200/JCO.20.0267233197225
  • SchnitzbauerAA, FilmannN, AdamR, et al. mTOR inhibition is most beneficial after liver transplantation for hepatocellular carcinoma in patients with active tumors. Ann Surg. 2020;272(5):855–862. doi:10.1097/SLA.000000000000428032889867
  • GeisslerEK, SchnitzbauerAA, ZölkeC, et al. Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label phase 3 trial. Transplantation. 2016;100(1):116–125. doi:10.1097/TP.000000000000096526555945
  • ShiahHS, ChenCY, DaiCY, et al. Randomised clinical trial: comparison of two everolimus dosing schedules in patients with advanced hepatocellular carcinoma. Aliment Pharmacol Ther. 2013;37(1):62–73. doi:10.1111/apt.1213223134470
  • LlovetJM, RicciS, MazzaferroV, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390. doi:10.1056/nejmoa070885718650514
  • KoeberleD, DufourJF, DemeterG, et al. Sorafenib with or without everolimus in patients with advanced hepatocellular carcinoma (HCC): a randomized multicenter, multinational Phase II trial (SAKK 77/08 and SASL 29). Ann Oncol. 2016;27(5):856–861. doi:10.1093/annonc/mdw05426884590
  • HuangTE, DengYN, HsuJL, et al. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front Pharmacol. 2020;11:1–14. doi:10.3389/fphar.2020.59906732116689
  • PezzutoF, BuonaguroL, BuonaguroFM, TorneselloML. The role of circulating free DNA and microRNA in non-invasive diagnosis of HBV- and HCV-related hepatocellular carcinoma. Int J Mol Sci. 2018;19(4):1007. doi:10.3390/ijms19041007
  • MaraveliaP, SilvaDN, RovestiG, et al. Liquid biopsy in hepatocellular carcinoma: opportunities and challenges for immunotherapy. Cancers. 2021;1–19.
  • KasebAO, SanchezNS, SenS, et al. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA. Clin Cancer Res. 2019;25(20):6107–6118. doi:10.1158/1078-0432.CCR-18-334131363003
  • DemoryA, NaultJC. Molecular perspectives for the treatment of hepatocellular carcinoma. Acta Gastroenterol Belg. 2020;83(2):309–312.32603051