205
Views
70
CrossRef citations to date
0
Altmetric
Original Research

Exosomes Derived from MicroRNA-146a-5p-Enriched Bone Marrow Mesenchymal Stem Cells Alleviate Intracerebral Hemorrhage by Inhibiting Neuronal Apoptosis and Microglial M1 Polarization

, , &
Pages 3143-3158 | Published online: 05 Aug 2020

References

  • XiG, KeepRF, HoffJT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. doi:10.1016/S1474-4422(05)70283-016361023
  • QureshiAI, TuhrimS, BroderickJP, BatjerHH, HondoH, HanleyDF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–1460. doi:10.1056/NEJM20010510344190711346811
  • GinhouxF, LimS, HoeffelG, LowD, HuberT. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45. doi:10.3389/fncel.2013.0004523616747
  • SuP, ZhangJ, WangD, et al. The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience. 2016;319:155–167. doi:10.1016/j.neuroscience.2016.01.03526827945
  • SominskyL, De LucaS, SpencerSJ. Microglia: key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol. 2018;94:56–60. doi:10.1016/j.biocel.2017.11.01229197626
  • FrancoR, Fernández-SuárezD. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol. 2015;131:65–86. doi:10.1016/j.pneurobio.2015.05.00326067058
  • LanX, HanX, LiQ, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun. 2017;61:326–339. doi:10.1016/j.bbi.2016.12.01228007523
  • WanS, ChengY, JinH, et al. Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res. 2016;7(6):478–487. doi:10.1007/s12975-016-0472-827206851
  • GurunathanS, KangMH, JeyarajM, QasimM, KimJH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307. doi:10.3390/cells8040307
  • WangY, ZhaoR, LiuD, DengW. Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxid Med Cell Longev. 2018;2018:4971261.30159114
  • XiaoY, GengF, WangG. Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J Cell Biochem. 2018;6.
  • Otero-OrtegaL, Gomez de FrutosMC, Laso-GarciaF, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2018;38(5):767–779. doi:10.1177/0271678X1770891728524762
  • GareevI, YangG, SunJ, et al. Circulating MicroRNAs as potential noninvasive biomarkers of spontaneous intracerebral hemorrhage. World Neurosurg. 2019.
  • OuyangY, LiD, WangH, et al. MiR-21-5p/dual-specificity phosphatase 8 signalling mediates the anti-inflammatory effect of haem oxygenase-1 in aged intracerebral haemorrhage rats. Aging Cell. 2019;18(6):e13022.31400088
  • YangW, ZhangJ, XuB, et al. HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice. Mol Ther. 2020;28(4):1200–1213. doi:10.1016/j.ymthe.2020.02.00332097602
  • BaglioSR, RooijersK, Koppers-LalicD, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6(1):127. doi:10.1186/s13287-015-0116-z26129847
  • XieY, ChuA, FengY, et al. MicroRNA-146a: a comprehensive indicator of inflammation and oxidative stress status induced in the brain of chronic T2DM rats. Front Pharmacol. 2018;9:478. doi:10.3389/fphar.2018.0047829867484
  • ChuB, ZhouY, ZhaiH, LiL, SunL, LiY. The role of microRNA-146a in regulating the expression of IRAK1 in cerebral ischemia-reperfusion injury. Can J Physiol Pharmacol. 2018;96(6):611–617. doi:10.1139/cjpp-2017-058629505740
  • QuX, WangN, ChengW, XueY, ChenW, QiM. MicroRNA-146a protects against intracerebral hemorrhage by inhibiting inflammation and oxidative stress. Exp Ther Med. 2019;18(5):3920–3928. doi:10.3892/etm.2019.806031656540
  • ZhangH, LuM, ZhangX, et al. Isosteviol sodium protects against ischemic stroke by modulating microglia/macrophage polarization via disruption of GAS5/miR-146a-5p sponge. Sci Rep. 2019;9(1):12221. doi:10.1038/s41598-019-48759-031434993
  • HuYL, WangH, HuangQ, WangG, ZhangHB. MicroRNA-23a-3p promotes the perihematomal edema formation after intracerebral hemorrhage via ZO-1. Eur Rev Med Pharmacol Sci. 2018;22(9):2809–2816. doi:10.26355/eurrev_201805_1498029771433
  • WangC, FeiY, XuC, ZhaoY, PanY. Bone marrow mesenchymal stem cells ameliorate neurological deficits and blood-brain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats. Int J Clin Exp Pathol. 2015;8(5):4715–4724.26191161
  • TsaiMJ, TsaiSK, HuBR, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci. 2014;21(1):5. doi:10.1186/1423-0127-21-524447306
  • DominiciM, Le BlancK, MuellerI, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–317. doi:10.1080/1465324060085590516923606
  • TakamatsuY, TamakoshiK, WasedaY, IshidaK. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats. Behav Brain Res. 2016;300:56–64. doi:10.1016/j.bbr.2015.12.00326675889
  • AliEHA, Ahmed-FaridOA, OsmanAAE. Bone marrow-derived mesenchymal stem cells ameliorate sodium nitrite-induced hypoxic brain injury in a rat model. Neural Regen Res. 2017;12(12):1990–1999. doi:10.4103/1673-5374.22115529323037
  • HuJ, ChenL, HuangX, et al. Calpain inhibitor MDL28170 improves the transplantation-mediated therapeutic effect of bone marrow-derived mesenchymal stem cells following traumatic brain injury. Stem Cell Res Ther. 2019;10(1):96. doi:10.1186/s13287-019-1210-430876457
  • HuangP, FreemanWD, EdenfieldBH, BrottTG, MeschiaJF, ZubairAC. Safety and efficacy of intraventricular delivery of bone marrow-derived mesenchymal stem cells in hemorrhagic stroke model. Sci Rep. 2019;9(1):5674.30952961
  • LiC, JiaoG, WuW, et al. Exosomes from bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/beta-catenin signaling pathway. Cell Transplant. 2019;28(11):1373–1383.31423807
  • ZhangY, ChoppM, ZhangZG, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2017;111:69–81. doi:10.1016/j.neuint.2016.08.00327539657
  • IndolfiC, CurcioA. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy. J Clin Invest. 2014;124(5):1896–1898. doi:10.1172/JCI7580124743143
  • RupaimooleR, CalinGA, Lopez-BeresteinG, SoodAK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235–246. doi:10.1158/2159-8290.CD-15-089326865249
  • HuangJH, XuY, YinXM, LinFY. Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience. 2019.
  • ZhangH, WangY, LvQ, GaoJ, HuL, HeZ. MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for treatment of intracerebral hemorrhage. Front Neurol. 2018;9:931. doi:10.3389/fneur.2018.0093130459705
  • DengY, ChenD, GaoF, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. 2019;13(1):71. doi:10.1186/s13036-019-0193-031485266
  • WangZ, ZhouF, DouY, et al. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl Stroke Res. 2018;9(1):74–91. doi:10.1007/s12975-017-0559-x28766251
  • ZhouY, WangY, WangJ, Anne StetlerR, YangQW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44. doi:10.1016/j.pneurobio.2013.11.00324291544
  • PravalikaK, SarmahD, KaurH, et al. Myeloperoxidase and neurological disorder: a crosstalk. ACS Chem Neurosci. 2018;9(3):421–430.29351721
  • SubhramanyamCS, WangC, HuQ, DheenST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112–120. doi:10.1016/j.semcdb.2019.05.00431077796
  • TellecheaM, BuxadeM. NFAT5-regulated macrophage polarization supports the proinflammatory function of macrophages and T lymphocytes. J Immunol. 2018;200(1):305–315.29150563
  • HuangY, LiaoZ, LinX, et al. Overexpression of miR-146a might regulate polarization transitions of BV-2 cells induced by high glucose and glucose fluctuations. Front Endocrinol (Lausanne). 2019;10:719. doi:10.3389/fendo.2019.0071931695681
  • SongT, MaX, GuK, et al. Thalidomide represses inflammatory response and reduces radiculopathic pain by inhibiting IRAK-1 and NF-kappaB/p38/JNK signaling. J Neuroimmunol. 2016;290:1–8. doi:10.1016/j.jneuroim.2015.11.00726711561
  • YiMH, LeeYS, KangJW, et al. NFAT5-dependent expression of AQP4 in astrocytes. Cell Mol Neurobiol. 2013;33(2):223–232. doi:10.1007/s10571-012-9889-023180003
  • YangXL, WangX, PengBW. NFAT5 has a job in the brain. Dev Neurosci. 2018;40(4):289–300. doi:10.1159/00049378930391952
  • JeongGR, ImSK, BaeYH, et al. Inflammatory signals induce the expression of tonicity-responsive enhancer binding protein (TonEBP) in microglia. J Neuroimmunol. 2016;295–296.
  • WangR, LiQ, HeY, YangY, MaQ, LiC. MiR-29c-3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson’s disease. Genes Cells. 2020;25(6):364–374. doi:10.1111/gtc.1276432160394
  • YooEJ, LeeHH, YeBJ, et al. TonEBP suppresses the HO-1 gene by blocking recruitment of Nrf2 to its promoter. Front Immunol. 2019;10:850. doi:10.3389/fimmu.2019.0085031057560