235
Views
28
CrossRef citations to date
0
Altmetric
Original Research

Hirudin Protects Against Kidney Damage in Streptozotocin-Induced Diabetic Nephropathy Rats by Inhibiting Inflammation via P38 MAPK/NF-κB Pathway

, ORCID Icon, , , &
Pages 3223-3234 | Published online: 07 Aug 2020

References

  • SerafinceanuC, NeculaescuC, CimponeriuD, TimarR, CovicAC. Impact of gender and dialysis modality on early mortality risk in diabetic ESRD patients: data from a large single center cohort. Int Urol Nephrol. 2014;46(3):607. doi:10.1007/s11255-013-0589-624366761
  • StackAG, MurthyBVR, MolonyDA. Survival differences between peritoneal dialysis and hemodialysis among\”large\” ESRD patients in the United States. Kidney Int. 2004;65(6):2398–2408. doi:10.1111/j.1523-1755.2004.00654.x15149353
  • WadaJ, MakinoH. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci. 2013;124(3):139–152. doi:10.1042/CS2012019823075333
  • WagnerSA, SatpathyS, BeliP, ChoudharyC. SPATA2 links CYLD to the TNF-alpha receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 2016;35(17):1868–1884. doi:10.15252/embj.20169430027307491
  • ZhangC, FengY, QuS, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res. 2011;90(3):538–545. doi:10.1093/cvr/cvr02221278141
  • StoneSR, HofsteengeJ. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986;25(16):4622–4628. doi:10.1021/bi00364a0253768302
  • MüllerC, HaaseM, LemkeS, HildebrandtJ-P. Hirudins and hirudin-like factors inHirudinidae: implications for function and phylogenetic relationships. Parasitol Res. 2017;116(1):313–325. doi:10.1007/s00436-016-5294-927785600
  • LiuP, PanX, YinG. Natural hirudin increases rat flap viability by anti-inflammation via PARs/p38/NF-κB pathway. BioMed Res Int. 2015;2015(12):1–7.
  • ZhaoL. Hirudin inhibits cell growth via ERK/MAPK signaling in human glioma. Int J Clin Exp Med. 2016;8(11):20983–20987.
  • PatelSH, SabbaghiA, CarrollCC. Streptozotocin-induced diabetes alters transcription of multiple genes necessary for extracellular matrix remodeling in rat patellar tendon. Connect Tissue Res. 2018;59(5):447–457. doi:10.1080/03008207.2018.147016829745261
  • Ying-XinG, Guo-QianY, Jia-QuanL, HanX. Effects of natural and recombinant hirudin on superoxide dismutase, malondialdehyde and endothelin levels in a random pattern skin flap model. J Hand Surg Eur Vol. 2012;37(1):42–49. doi:10.1177/175319341141462821816891
  • WangX, GaoL, LinH, SongJ, LiL. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. Eur J Pharmacol. 2018;824:170–178.29444469
  • PanY, ZhuG, WangY, et al. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. J Nutr Biochem. 2013;24;1:146–155.22819547
  • CaoY, HaoY, LiH, et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med. 2014;33(4):809–816. doi:10.3892/ijmm.2014.164224503896
  • MengX, MartinezMA, Raymond-StintzMA, WinterSS, WilsonBS. IKK inhibitor bay 11-7082 induces necroptotic cell death in precursor-B acute lymphoblastic leukaemic blasts. Br J Haematol. 2010;148(3):487–490. doi:10.1111/j.1365-2141.2009.07988.x19958360
  • ZuoHJ, LinJY, LiuZY, et al. Activation of the ERK signaling pathway is involved in CD151-induced angiogenic effects on the formation of CD151-integrin complexes. Acta Pharmacol Sin. 2010;31(7):805–812. doi:10.1038/aps.2010.6520581856
  • JieT, JingpuZ, YunL. Mitochondrial sirtuin 4 resolves immune tolerance in monocytes by rebalancing glycolysis and glucose oxidation homeostasis. Front Immunol. 2018;9:419.29593712
  • WilsonHM, WalbaumD, ReesAJ. Macrophages and the kidney. Curr Opin Nephrol Hypertens. 2004;13(3):285–290. doi:10.1097/00041552-200405000-0000415073486
  • VerzolaD, GandolfoMT, FerrarioF, et al. Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int. 2007;72(10):1262–1272. doi:10.1038/sj.ki.500253117851466
  • MeniniS, IacobiniC, OddiG, et al. Increased glomerular cell (podocyte) apoptosis in rats with streptozotocin-induced diabetes mellitus: role in the development of diabetic glomerular disease. Diabetologia. 2007;50(12):2591–2599. doi:10.1007/s00125-007-0821-y17901943
  • MadhusudhanT, KerlinBA, IsermannB. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol. 2013;12(2):94.
  • ChenJ, VemuriC, PalekarRU, et al. Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2015;308(7):F765–F773. doi:10.1152/ajprenal.00457.201425651565
  • PopoviM, SmiljaniK, DobutoviB, SyrovetsT, SimmetT, IsenoviER. Thrombin and vascular inflammation. Mol Cell Biochem. 2012;359(1–2):301–313.21858738
  • MylesT, NishimuraT, YunTH, et al. Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem. 2003;278(51):51059–51067. doi:10.1074/jbc.M30697720014525995
  • KitamotoY, ArizonoK, FukuiH, et al. Urinary thrombin: a novel marker of glomerular inflammation for the diagnosis of crescentic glomerulonephritis (prospective observational study). PLoS One. 2015;10(3):e0118704. doi:10.1371/journal.pone.011870425742509
  • TeschGH. Role of macrophages in complications of type 2 diabetes. Clin Exp Pharmacol Physiol. 2010;34(10):1016–1019. doi:10.1111/j.1440-1681.2007.04729.x
  • YonemotoS, MachiguchiT, NomuraK, MinakataT, NannoM, YoshidaH. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus. Clin Exp Nephrol. 2006;10(3):186–192. doi:10.1007/s10157-006-0426-717009076
  • SakaiN, WadaT. Revisiting inflammation in diabetic nephropathy: the role of the Nlrp3 inflammasome in glomerular resident cells. Kidney Int. 2015;87(1):12–14. doi:10.1038/ki.2014.32225549120
  • WadaJ, MakinoH. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2015;12(1):13–26. doi:10.1038/nrneph.2015.17526568190
  • ImasawaT, ObreE, BellanceN, et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 2017;31(1):294–307.27825100
  • TianX, IshibeS. Targeting the podocyte cytoskeleton: from pathogenesis to therapy in proteinuric kidney disease. Nephrol Dial Transplant. 2016;31(10):1577–1583.26968197
  • QianX, TanJ, LiuL, ChenS, LuY. MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2. Am J Transl Res. 2018;10(3):989–997.29636888
  • WynnTA, BarronL. Macrophages: master regulators of inflammation and fibrosis. Paper presented at: Seminars in liver disease NIH Public Access, 2010, 30(3): 245.
  • TangPM-K, Nikolic-PatersonDJ, LanH-Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–158. doi:10.1038/s41581-019-0110-230692665
  • BrunetA, SweeneyLB, SturgillJF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (New York, N Y). 2004;303(5666):2011–2015. doi:10.1126/science.1094637