115
Views
23
CrossRef citations to date
0
Altmetric
Original Research

Tanshinone IIA Ameliorates Streptozotocin-Induced Diabetic Nephropathy, Partly by Attenuating PERK Pathway-Induced Fibrosis

, , , , , & show all
Pages 5773-5782 | Published online: 31 Dec 2020

References

  • LamTH, HoDS, JiangC, NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England). 2016;387(10027):1513–1530. doi:10.1016/S0140-6736(16)00618-8
  • KolsetSO, ReinholtFP, JenssenT. Diabetic nephropathy and extracellular matrix. J Histochem Cytochem. 2012;60(12):976–986. doi:10.1369/002215541246507323103723
  • BonnansC, ChouJ, WerbZ. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801. doi:10.1038/nrm390425415508
  • SutariyaB, JhonsaD, SarafMN. TGF-β: the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol. 2016;38(1):39–49. doi:10.3109/08923973.2015.112738226849902
  • TangF, HaoY, ZhangX, QinJ. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy. Drug Des Devel Ther. 2017;11:2813–2826. doi:10.2147/DDDT.S143805
  • XuY, WangJ, PanT, et al. Role of the ER stress in prostaglandin E2/E-prostanoid 2 receptor involved TGF-β1-induced mice mesangial cell injury. Mol Cell Biochem. 2016;411(1–2):43–55. doi:10.1007/s11010-015-2567-z26463992
  • FanY, LeeK, WangN, HeJC. The role of endoplasmic reticulum stress in diabetic nephropathy. Curr Diab Rep. 2017;17(3):17. doi:10.1007/s11892-017-0842-y28271468
  • ChenY, GuiD, ChenJ, HeD, LuoY, WangN. Down-regulation of PERK-ATF4-CHOP pathway by astragaloside IV is associated with the inhibition of endoplasmic reticulum stress-induced podocyte apoptosis in diabetic rats. Cell Physiol Biochem. 2014;33(6):1975–1987. doi:10.1159/00036297425012492
  • HeindryckxF, BinetF, PonticosM, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing. EMBO Mol Med. 2016;8(7):729–744. doi:10.15252/emmm.20150592527226027
  • KooJH, LeeHJ, KimW, KimSG. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2. Gastroenterology. 2016;150(1):181–193.e188. doi:10.1053/j.gastro.2015.09.03926435271
  • HoffmanSM, TullyJE, NolinJD, et al. Endoplasmic reticulum stress mediates house dust mite-induced airway epithelial apoptosis and fibrosis. Respir Res. 2013;14(1):141. doi:10.1186/1465-9921-14-14124364984
  • LiQ, HuK, TangS, XuLF, LuoYC. Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against lewis mice with lung cancer. Asian Pac J Trop Med. 2016;9(11):1084–1088. doi:10.1016/j.apjtm.2016.09.00327890369
  • TsaiMY, YangRC, WuHT, PangJH, HuangST. Anti-angiogenic effect of tanshinone IIA involves inhibition of matrix invasion and modification of MMP-2/TIMP-2 secretion in vascular endothelial cells. Cancer Lett. 2011;310(2):198–206. doi:10.1016/j.canlet.2011.06.03121788102
  • CaoL, HuangB, FuX, YangJ, LinY, LinF. Effects of tanshinone IIA on the regulation of renal proximal tubular fibrosis. Mol Med Rep. 2017;15(6):4247–4252. doi:10.3892/mmr.2017.649828440499
  • GuJ, LiH-L, WuH-Y, et al. Sodium tanshinone IIA sulfonate attenuates radiation-induced fibrosis damage in cardiac fibroblasts. J Asian Nat Prod Res. 2014;16(9):941–952. doi:10.1080/10286020.2014.93576925135631
  • XuL, ShenP, BiY, et al. Danshen injection ameliorates STZ-induced diabetic nephropathy in association with suppression of oxidative stress, pro-inflammatory factors and fibrosis. Int Immunopharmacol. 2016;38:385–394. doi:10.1016/j.intimp.2016.06.02427355131
  • JiangC, ShaoQ, JinB, GongR, ZhangM, XuB. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment. Biomed Res Int. 2015;2015:867140. doi:10.1155/2015/86714026885500
  • ZhangQ, HeL, DongY, et al. Sitagliptin ameliorates renal tubular injury in diabetic kidney disease via STAT3-dependent mitochondrial homeostasis through SDF-1α/CXCR4 pathway. FASEB J. 2020;34(6):7500–7519. doi:10.1096/fj.201903038R32281218
  • ZhangH, NairV, SahaJ, et al. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 2017;92(4):909–921. doi:10.1016/j.kint.2017.03.02728554737
  • KimSK, JungKH, LeeBC. Protective effect of tanshinone IIA on the early stage of experimental diabetic nephropathy. Biol Pharm Bull. 2009;32(2):220–224. doi:10.1248/bpb.32.22019182379
  • ChenJ, BiY, ChenL, ZhangQ, XuL. Tanshinone IIA exerts neuroprotective effects on hippocampus-dependent cognitive impairments in diabetic rats by attenuating ER stress-induced apoptosis. Biomed Pharmacother. 2018;104:530–536. doi:10.1016/j.biopha.2018.05.04029800917
  • ChiuTL, SuCC. Tanshinone IIA induces apoptosis in human lung cancer A549 cells through the induction of reactive oxygen species and decreasing the mitochondrial membrane potential. Int J Mol Med. 2010;25(2):231–236.20043132
  • NajafianB, AlpersCE, FogoAB. Pathology of human diabetic nephropathy. Contrib Nephrol. 2011;170:36–47.21659756
  • BoseM, AlmasS, PrabhakarS. Wnt signaling and podocyte dysfunction in diabetic nephropathy. J Clin Invest Med. 2017;65(8):1093–1101. doi:10.1136/jim-2017-000456
  • PetermannAT, PippinJ, DurvasulaR, et al. Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int. 2005;67(1):157–166. doi:10.1111/j.1523-1755.2005.00066.x15610239
  • ErensoyN, YilmazerS, OztürkM, TunçdemirM, UysalO, HatemiH. Effects of ACE inhibition on the expression of type IV collagen and laminin in renal glomeruli in experimental diabetes. Acta Histochem. 2004;106(4):279–287. doi:10.1016/j.acthis.2004.04.00115350810
  • BartonM, SorokinA. Endothelin and the glomerulus in chronic kidney disease. Semin Nephrol. 2015;35(2):156–167. doi:10.1016/j.semnephrol.2015.02.00525966347
  • KumarGS, SalimathPV. Effect of spent turmeric on kidney glycoconjugates in streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2014;13:78. doi:10.1186/2251-6581-13-7826413492
  • CastroNE, KatoM, ParkJT, NatarajanR. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J Biol Chem. 2014;289(42):29001–29013. doi:10.1074/jbc.M114.60078325204661
  • LoCS, ShiY, ChangSY, et al. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes. Diabetologia. 2015;58(10):2443–2454. doi:10.1007/s00125-015-3700-y26232095
  • BigeN, ShwekeN, BenhassineS, et al. Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction. Kidney Int. 2012;81(12):1226–1238. doi:10.1038/ki.2012.2122418977
  • KimH, MoonSY, KimJS, et al. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am J Physiol Renal Physiol. 2015;308(3):F226–F236. doi:10.1152/ajprenal.00495.201425428127
  • GuoH, LiH, LingL, GuY, DingW. Endoplasmic reticulum chaperon tauroursodeoxycholic acid attenuates aldosterone-infused renal injury. Mediators Inflamm. 2016;2016:4387031. doi:10.1155/2016/438703127721575
  • LinJH, LiH, ZhangY, RonD, WalterP. Divergent effects of PERK and IRE1 signaling on cell viability. PLoS One. 2009;4(1):e4170. doi:10.1371/journal.pone.000417019137072
  • HetzC. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. doi:10.1038/nrm327022251901
  • LinJH, LiH, YasumuraD, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science (New York, NY). 2007;318(5852):944–949. doi:10.1126/science.1146361
  • GiribabuN, KarimK, KilariEK, SallehN. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. J Ethnopharmacol. 2017;205:123–137. doi:10.1016/j.jep.2017.05.00228483637