151
Views
3
CrossRef citations to date
0
Altmetric
Methodology

Novel Fast and Reliable Method for Nano-Erythrosome Production Using Shear Force

, , ORCID Icon, , & ORCID Icon
Pages 4547-4560 | Published online: 28 Oct 2020

References

  • WilczewskaAZ, NiemirowiczK, MarkiewiczKH, CarH. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. doi:10.1016/S1734-1140(12)70901-523238461
  • HamidiM, ZarrinA, ForoozeshM, Mohammadi-SamaniS. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J Control Release. 2007;118(2):145–160. doi:10.1016/j.jconrel.2006.06.03217270305
  • ZarrinA, ForoozeshM, HamidiM. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin Drug Deliv. 2014;11(3):433–447. doi:10.1517/17425247.2014.88042224456118
  • Gutiérrez MillánC, BravoDG, LanaoJM. New erythrocyte-related delivery systems for biomedical applications. J Drug Deliv Sci Technol. 2017;42:38–48. doi:10.1016/j.jddst.2017.03.019
  • PatelPD, DandN, HirlekarRS, KadamVJ. Drug loaded erythrocytes: as novel drug delivery system. Curr Pharm Des. 2008;14(1):63–70. doi:10.2174/13816120878333077218220819
  • VillaCH, AnselmoAC, MitragotriS, MuzykantovV. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev. 2016;106(Pt A):88–103. doi:10.1016/j.addr.2016.02.00726941164
  • BrennerJS, PanDC, MyersonJW, et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun. 2018;9(1):2684. doi:10.1038/s41467-018-05079-729992966
  • GustafsonHH, Holt-CasperD, GraingerDW, GhandehariH. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. doi:10.1016/j.nantod.2015.06.00626640510
  • SuriSS, FenniriH, SinghB. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16. doi:10.1186/1745-6673-2-1618053152
  • HuCM, ZhangL, AryalS, CheungC, FangRH, ZhangL. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–10985. doi:10.1073/pnas.110663410821690347
  • ZhangH. Erythrocytes in nanomedicine: an optimal blend of natural and synthetic materials. Biomater Sci. 2016;4(7):1024–1031. doi:10.1039/C6BM00072J27090487
  • DongX, NiuY, DingY, et al. Formulation and drug loading features of nano-erythrocytes. Nanoscale Res Lett. 2017;12(1):202.28314369
  • LejeuneA, MoorjaniM, GicquaudC, LacroixJ, PoyetP, GaudreaultR. Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res. 1994;14(3A):915–919.8074493
  • PayghanS. Nanoerythrosomes: engineered erythrocytes as a novel carrier for the targeted drug delivery. Asian J Pharm. 2016;10:S223–S233.
  • UhumwanghoMUOR. Current trends in the production and biomedical applications of liposomes: a review. J Med Biomed Res. 2005;4(1):9–21.
  • LapinskiMM, Castro-ForeroA, GreinerAJ, OfoliRY, BlanchardGJ. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir. 2007;23(23):11677–11683. doi:10.1021/la702096317939695
  • GuptaN, PatelB, AhsanF. Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res. 2014;31(6):1553–1565. doi:10.1007/s11095-013-1261-724449438
  • HunterDG, FriskenBJ. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles. Biophys J. 1998;74(6):2996–3002. doi:10.1016/S0006-3495(98)78006-39635753
  • PattyPJ, FriskenBJ. The pressure-dependence of the size of extruded vesicles. Biophys J. 2003;85(2):996–1004. doi:10.1016/S0006-3495(03)74538-X12885646
  • ChoNJ, HwangLY, SolandtJJR, FrankCW. Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials (Basel). 2013;6(8):3294–3308. doi:10.3390/ma608329428811437
  • KrupkovaO, SekiguchiM, KlasenJ, et al. Epigallocatechin 3-gallate suppresses interleukin-1beta-induced inflammatory responses in intervertebral disc cells in vitro and reduces radiculopathic pain in rats. Eur Cell Mater. 2014;28:372–386. doi:10.22203/eCM.v028a2625422948
  • ZengL, YanJ, LuoL, MaM, ZhuH. Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci Rep. 2017;7:45521.28349962
  • IhlerGM, TsangHC. Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes. Methods Enzymol. 1987;149:221–229.3121983
  • TurkmenN, SariF, VeliogluYS. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 2006;99(4):835–841. doi:10.1016/j.foodchem.2005.08.034
  • BussN, YasaO, AlapanY, AkolpogluMB, SittiM. Nanoerythrosome-functionalized biohybrid microswimmers. APL Bioeng. 2020;4(2):026103. doi:10.1063/1.513067032548539
  • TajerzadehH, HamidiM. Evaluation of hypotonic preswelling method for encapsulation of enalaprilat in intact human erythrocytes. Drug Dev Ind Pharm. 2000;26(12):1247–1257. doi:10.1081/DDC-10010230611147125
  • JacobsC, KayserO, MullerRH. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 2000;196(2):161–164. doi:10.1016/S0378-5173(99)00412-310699709
  • WissingSA, KayserO, MullerRH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–1272. doi:10.1016/j.addr.2003.12.00215109768
  • PanD, Vargas-MoralesO, ZernB, et al. The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS One. 2016;11(3):e0152074. doi:10.1371/journal.pone.015207427003833
  • PanDC, MyersonJW, BrennerJS, et al. Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Sci Rep. 2018;8(1):1615. doi:10.1038/s41598-018-19897-829371620
  • VillaCH, CinesDB, SiegelDL, MuzykantovV. Erythrocytes as carriers for drug delivery in blood transfusion and beyond. Transfus Med Rev. 2017;31(1):26–35. doi:10.1016/j.tmrv.2016.08.00427707522
  • CarnemollaR, VillaCH, GreinederCF, et al. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury. FASEB J. 2017;31(2):761–770. doi:10.1096/fj.201600912R27836986
  • VillaCH, PanDC, JohnstonIH, et al. Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Adv. 2018;2(3):165–176.29365311
  • VillaCH, SeghatchianJ, MuzykantovV. Drug delivery by erythrocytes: “Primum non nocere”. Transfus Apher Sci. 2016;55(3):275–280. doi:10.1016/j.transci.2016.10.01727856317