107
Views
5
CrossRef citations to date
0
Altmetric
Original Research

New Benzofuran N-Acylhydrazone Reduces Cardiovascular Dysfunction in Obese Rats by Blocking TNF-Alpha Synthesis

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 3337-3350 | Published online: 17 Aug 2020

References

  • ChoNH, ShawJE, KarurangaS, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.02329496507
  • ApovianCM, OkemahJ, O’NeilPM. Body weight considerations in the management of type 2 diabetes. Adv Ther. 2019;36(1):44–58. doi:10.1007/s12325-018-0824-830465123
  • HenningRJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509. doi:10.2217/fca-2018-004530409037
  • CohenJB. Hypertension in obesity and the impact of weight loss. Curr Cardiol Rep. 2017;19(10):98. doi:10.1007/s11886-017-0912-428840500
  • Baena-DiezJM, PenafielJ, SubiranaI, et al. Risk of cause-specific death in individuals with diabetes: a competing risks analysis. Diabetes Care. 2016;39(11):1987–1995. doi:10.2337/dc16-061427493134
  • SeravalleG, GrassiG. Obesity and hypertension. Pharmacol Res. 2017;122:1–7. doi:10.1016/j.phrs.2017.05.01328532816
  • CohenJB, Stephens-ShieldsAJ, DenburgMR, AndersonAH, TownsendRR, ReesePP. Obesity, renin-angiotensin system blockade and risk of adverse renal outcomes: a population-based cohort study. Am J Nephrol. 2016;43(6):431–440. doi:10.1159/00044686227228992
  • JiaG, Whaley-ConnellA, SowersJR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–28. doi:10.1007/s00125-017-4390-428776083
  • AnejaA, TangWHW, BansilalS, GarciaMJ, FarkouhME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121(9):748–757. doi:10.1016/j.amjmed.2008.03.04618724960
  • BattiproluPK, GilletteTG, WangZV, LavanderoS, HillJA. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov Today Dis Mech. 2010;7(2):e135–e143. doi:10.1016/j.ddmec.2010.08.00121274425
  • PollackRM, DonathMY, LeRoithD, LeibowitzG. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care. 2016;39(Supplement 2):S244–S252. doi:10.2337/dcS15-301527440839
  • FusterJJ, OuchiN, GokceN, WalshK. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118(11):1786–1807. doi:10.1161/CIRCRESAHA.115.30688527230642
  • MannDL. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol. 2003;65:81–101. doi:10.1146/annurev.physiol.65.092101.14224912500970
  • SinghS, FacciorussoA, SinghAG, et al. Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: a systematic review and meta-analysis. PLoS One. 2018;13(5):e0195123. doi:10.1371/journal.pone.019512329771924
  • BarbosaML, deC, FumianMM, MirandaALP, de, BarreiroEJ, LimaLM. Therapeutic approaches for tumor necrosis factor inhibition. Braz J Pharm Sci. 2011;47(3):427–446. doi:10.1590/S1984-82502011000300002
  • FumianMM, da MottaNAV, MaiaR, FragaCAM, BarreiroEJ, Ferreira de BritoFC. LASSBio-1425, an analog of thalidomide, decreases triglyceride and increases HDL cholesterol levels by inhibition of TNF-α production. Int J Cardiol. 2016;202:497–499. doi:10.1016/j.ijcard.2015.09.07126440459
  • AlvesBEO, de AlencarAKN, GambaLER, et al. Reduction of cardiac and renal dysfunction by new inhibitor of DPP4 in diabetic rats. Pharmacol Rep. 2019;71(6):1190–1200. doi:10.1016/j.pharep.2019.07.00531669883
  • ThotaS, RodriguesDA, PinheiroP, et al. N-Acylhydrazones as drugs. Bioorg Med Chem Lett. 2018;28(17):2797–2806. doi:10.1016/j.bmcl.2018.07.01530006065
  • FragaCAM, BarreiroEJ. Medicinal chemistry of N-acylhydrazones: new lead-compounds of analgesic, antiinflammatory and antithrombotic drugs. Curr Med Chem. 2006;13(2):167–198. doi:10.2174/09298670677519788116472212
  • CostanteR, StefanucciA, CarradoriS, NovellinoE, MollicaA. DPP-4 inhibitors: a patent review (2012 – 2014). Expert Opin Ther Pat. 2015;25(2):209–236. doi:10.1517/13543776.2014.99130925482888
  • LimaL, BarreiroE. Bioisosterism: a useful strategy for molecular modification and drug design. Curr Med Chem. 2005;12(1):23–49. doi:10.2174/092986705336354015638729
  • PetersonRG. The Zucker diabetic fatty (ZDF) rat In: SimaAAF, ShafrirE, editors. Animal Models in Diabetes: A Primer. Amsterdam: Harwood Academic Publishers; 2000:95–112.
  • Guerrero-RomeroF, Simental-MendíaLE, González-OrtizM, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–3351. doi:10.1210/jc.2010-028820484475
  • KatzA, NambiSS, MatherK, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–2410. doi:10.1210/jcem.85.7.666110902785
  • SchindelinJ, Arganda-CarrerasI, FriseE, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi:10.1038/nmeth.201922743772
  • BradfordMM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi:10.1016/0003-2697(76)90527-3942051
  • LiuRH, MizutaM, KuroseT, MatsukuraS. Early events involved in the development of insulin resistance in Zucker fatty rat. Int J Obes Relat Metab Disord. 2002;26(3):318–326. doi:10.1038/sj.ijo.080192411896486
  • American Diabetes Association. Obesity management for the treatment of type 2 diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Supplement1):S89–S97. doi:10.2337/dc20-S008.31862751
  • BessesenDH, Van GaalLF. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018;6(3):237–248. doi:10.1016/S2213-8587(17)30236-X28919062
  • ChukirT, ShuklaAP, SaundersKH, AronneLJ. Pharmacotherapy for obesity in individuals with type 2 diabetes. Expert Opin Pharmacother. 2018;19(3):223–231. doi:10.1080/14656566.2018.142855829376439
  • American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S98–S110. doi:10.2337/dc20-S009.31862752
  • ZatteraleF, LongoM, NaderiJ, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2020;10. doi:10.3389/fphys.2019.01607
  • GaoX, PicchiA, ZhangC. Upregulation of TNF-alpha and receptors contribute to endothelial dysfunction in Zucker diabetic rats. Am J Biomed Sci. 2010;2(1):1–12. doi:10.5099/aj10010000120559450
  • CookRF, BusseyCT, MellorKM, CraggPA, LambertsRR. β 1 -adrenoceptor, but not β 2 -adrenoceptor, subtype regulates heart rate in type 2 diabetic rats in vivo. Exp Physiol. 2017;102(8):911–923. doi:10.1113/EP08629328543947
  • JiangC, CarillionA, NaN, et al. Modification of the β-adrenoceptor stimulation pathway in Zucker obese and obese diabetic rat myocardium*. Crit Care Med. 2015;43(7):e241–e249. doi:10.1097/CCM.000000000000099926079096
  • ThaungHPA, BaldiJC, WangH-Y, et al. Increased efferent cardiac sympathetic nerve activity and defective intrinsic heart rate regulation in type 2 diabetes. Diabetes. 2015;64(8):2944–2956. doi:10.2337/db14-095525784543
  • LohmeierTE, IliescuR. The sympathetic nervous system in obesity hypertension. Curr Hypertens Rep. 2013;15(4):409–416. doi:10.1007/s11906-013-0356-123677623
  • ParishRC, TodmanS, JainSK. Resting heart rate variability, inflammation, and insulin resistance in overweight and obese adolescents. Metab Syndr Relat Disord. 2016;14(6):291–297. doi:10.1089/met.2015.014027182718
  • CrendalE, WaltherG, VinetA, et al. Myocardial deformation and twist mechanics in adults with metabolic syndrome: impact of cumulative metabolic burden. Obesity. 2013;21(12):E679–E686. doi:10.1002/oby.2053723804526
  • TiwariS, MishraM, JadhavA, et al. The risk of heart failure and cardiometabolic complications in obesity may be masked by an apparent healthy status of normal blood glucose. Oxid Med Cell Longev. 2013;2013:1–16. doi:10.1155/2013/253657
  • WestermannD, Van LinthoutS, DhayatS, et al. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol. 2007;102(6):500–507. doi:10.1007/s00395-007-0673-017909696
  • BrennerD, BlaserH, MakTW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15(6):362–374. doi:10.1038/nri383426008591
  • KyriakisJM. Activation of the AP-1 transcription factor by inflammatory cytokines of the TNF family. Gene Expr. 1999;7(4–6):217–231.10440223
  • SongD, KuoK-H, YaoR, HutchingsSR, PangCCY. Inducible nitric oxide synthase depresses cardiac contractile function in Zucker diabetic fatty rats. Eur J Pharmacol. 2008;579(1–3):253–259. doi:10.1016/j.ejphar.2007.09.04317976576
  • MaC, FuZ, GuoH, WeiH, ZhaoX, LiY. The effects of Radix Angelica Sinensis and Radix Hedysari ultrafiltration extract on X-irradiation-induced myocardial fibrosis in rats. Biomed Pharmacother. 2019;112:108596. doi:10.1016/j.biopha.2019.01.05730780109
  • MinW, BinZW, QuanZ, BinHZJ, ShengFG. The signal transduction pathway of PKC/NF-kappa B/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats. Cardiovasc Diabetol. 2009;8:8. doi:10.1186/1475-2840-8-819210763
  • GoetzeS, KintscherU, KaneshiroK, et al. TNFα induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2. Atherosclerosis. 2001;159(1):93–101. doi:10.1016/S0021-9150(01)00497-X11689211
  • LiuQ, HuaB, SuW, et al. AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats. Biomed Pharmacother. 2019;120:109527. doi:10.1016/j.biopha.2019.10952731629953
  • AdamopoulosC, PiperiC, GargalionisAN, et al. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. Cell Mol Life Sci. 2016;73(8):1685–1698. doi:10.1007/s00018-015-2091-z26646068
  • YaoD, BrownleeM. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes. 2010;59(1):249–255. doi:10.2337/db09-080119833897
  • LimS, LeeME, JeongJ, et al. sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm Res. 2018;67(8):691–701. doi:10.1007/s00011-018-1160-929796842
  • HegabZ, MohamedTMA, StaffordN, MamasM, CartwrightEJ, OceandyD. Advanced glycation end products reduce the calcium transient in cardiomyocytes by increasing production of reactive oxygen species and nitric oxide. FEBS Open Bio. 2017;7(11):1672–1685. doi:10.1002/2211-5463.12284
  • TsoporisJN, IzharS, ProteauG, SlaughterG, ParkerTG. S100B-RAGE dependent VEGF secretion by cardiac myocytes induces myofibroblast proliferation. J Mol Cell Cardiol. 2012;52(2):464–473. doi:10.1016/j.yjmcc.2011.08.01521889514
  • AnuranjaniBM. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol. 2014;2:832–846. doi:10.1016/j.redox.2014.02.00825009785
  • VolzHC, SeidelC, LaohachewinD, et al. HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol. 2010;105(6):805–820. doi:10.1007/s00395-010-0114-320703492
  • TanakaN, YonekuraH, YamagishiS, FujimoriH, YamamotoY, YamamotoH. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-α through nuclear factor-κB, and by 17β-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem. 2000;275(33):25781–25790. doi:10.1074/jbc.M00123520010829018
  • YamamotoM, IshizuT, SeoY, et al. Teneligliptin prevents cardiomyocyte hypertrophy, fibrosis, and development of hypertensive heart failure in dahl salt-sensitive rats. J Card Fail. 2018;24(1):53–60. doi:10.1016/j.cardfail.2017.09.00128888840
  • McMurrayJJV, PonikowskiP, BolliGB, et al. Effects of vildagliptin on ventricular function in patients with type 2 diabetes mellitus and heart failure. JACC Hear Fail. 2018;6(1):8–17. doi:10.1016/j.jchf.2017.08.004
  • ArturiF, SuccurroE, MiceliS, et al. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure. Endocrine. 2017;57(3):464–473. doi:10.1007/s12020-016-1166-427830456