213
Views
14
CrossRef citations to date
0
Altmetric
Original Research

Anti-Tumor Xanthones from Garcinia nujiangensis Suppress Proliferation, and Induce Apoptosis via PARP, PI3K/AKT/mTOR, and MAPK/ERK Signaling Pathways in Human Ovarian Cancers Cells

ORCID Icon, &
Pages 3965-3976 | Published online: 25 Sep 2020

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: gLOBOCANestimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi:10.3322/caac.2149230207593
  • VolpeJ, FilipiJG, CooperOR, PensonRT. Frontline therapy of ovarian cancer: trials and tribulations. Curr Opin Obstet Gynecol. 2018;30:1–6. doi:10.1097/GCO.000000000000043429251676
  • KangK, WangY. Sevoflurane inhibits proliferation and invasion of human ovarian cancer cells by regulating JNK and p38 MAPK signaling pathway. Drug Des Devel Ther. 2019;13:4451–4460. doi:10.2147/DDDT.S223581
  • XieHY, WangWJ, XiaBR, JinWL, LouG. Therapeutic applications of PARP inhibitors in ovarian cancer. Biomed Pharmacother. 2020;127:110204–110216. doi:10.1016/j.biopha.2020.11020432422564
  • DeshaiesRJ. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature. 2020;580:329–338. doi:10.1038/s41586-020-2168-132296187
  • CaumannsJJ, van WijngaardenA, KolA, et al. Low-dose triple drug combination targeting the PI3K/AKT/mTOR pathway and the MAPK pathway is an effective approach in ovarian clear cell carcinoma. Cancer Lett. 2019;461:102–111. doi:10.1016/j.canlet.2019.07.00431319139
  • LoureiroDRP, SoaresJX, CostaJC, et al. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: a review. Molecules. 2019;24:E243–E354. doi:10.3390/molecules2402024330634698
  • WangSP, WangL, ChenMW, WangYT. Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression. Chem Biol Interact. 2015;235:76–84. doi:10.1016/j.cbi.2015.03.01725824409
  • Herrera-AcoDR, Medina-CamposON, Pedraza-ChaverriJ, Sciutto-CondeE, Rosas-SalgadoG, Fragoso-GonzálezG. Alpha-mangostin: anti-inflammatory and antioxidant effects on established collagen-induced arthritis in DBA/1J mice. Food Chem Toxicol. 2019;124:300–315. doi:10.1016/j.fct.2018.12.01830557668
  • MarianoLNB, BoeingT, SilvaRCMVAF, Cechinel-FilhoV, AndradeSF. 1,3,5,6-Tetrahydroxyxanthone, a natural xanthone, induces diuresis and saluresis in normotensive and hypertensive rats. Chem Biol Interact. 2019;311:108778–108786. doi:10.1016/j.cbi.2019.10877831377058
  • RodniemS, TiyaoV, Nilbu-NgaC, PoonkhumR, PongmayteegulS, PradidarcheepW. Protective effect of alpha-mangostin on thioacetamide-induced liver fibrosis in rats as revealed by morpho-functional analysis. Histol Histopathol. 2019;34:419–430. doi:10.14670/HH-18-05230306536
  • ZhouLY, PengJL, WangJM, GengYY, ZuoZL, HuaY. Structure-activity relationship of xanthones as inhibitors of xanthine oxidase. Molecules. 2018;23:E365–E374. doi:10.3390/molecules2302036529425137
  • JangJH, LeeKH, JungHK, SimMO, ChoHW. Anti-inflammatory effects of 6′-O-acetyl mangiferin from Iris rossii Baker via NF-κb signal blocking in lipopolysaccharide-stimulated RAW 264.7 cells. Chem Biol Interact. 2016;257:54–60. doi:10.1016/j.cbi.2016.07.02927474068
  • SantosCMM, FreitasM, FernandesE. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem. 2018;157:1460–1479. doi:10.1016/j.ejmech.2018.07.07330282319
  • NatháliaL, LuisaBM, SilvaM, et al. Gastroprotective xanthones isolated from Garcinia achachairu: study on mucosal defensive factors and H+, K+-ATPase activity. Chem Biol Interact. 2016;258:30–39. doi:10.1016/j.cbi.2016.08.00927545833
  • IbrahimMY, Mohd HashimN, MohanS, et al. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens. Drug Des Devel Ther. 2018;12:533–534. doi:10.2147/DDDT.S167650
  • SzwalbeAJ, WilliamsK, SongZ, et al. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chem Sci. 2018;10:233–238. doi:10.1039/c8sc03778g30746079
  • SmithMJ, ReichlKD, EscobarRA, et al. Asymmetric synthesis of griffipavixanthone employing a chiral phosphoric acid-catalyzed cycloaddition. J Am Chem Soc. 2019;141:148–153. doi:10.1021/jacs.8b1252030566336
  • WuJQ, DaiJW, ZhangYY, et al. Synthesis of novel xanthone analogues and their growth inhibitory activity against human lung cancer A549 cells. Drug Des Devel Ther. 2019;13:4239–4246. doi:10.2147/DDDT.S217827
  • WinterDK, SlomanDL, PorcoJA. Polycyclic xanthone natural products: structure, biological activity and chemical synthesis. Nat Prod Rep. 2013;30:382–391. doi:10.1039/c3np20122h23334431
  • XiaZX, ZhangDD, LiangS, et al. Bioassay-guided isolation of prenylated xanthones and polycyclic acylphloroglucinols from the leaves of Garcinia nujiangensis. J Nat Prod. 2012;75:1459–1464. doi:10.1021/np300363922871217
  • TangZY, XiaZX, QiaoSP, et al. Four new cytotoxic xanthones from Garcinia nujiangensis. Fitoterapia. 2015;102:109–114. doi:10.1016/j.fitote.2015.02.01125727735
  • TangZY, LuLH, ZhouXY, et al. A new cytotoxic polycyclic polyprenylated acylphloroglucinol from Garcinia nujiangensis screened by the LC-PDA and LC-MS. Nat Prod Res. 2020;34:2448–2455. doi:10.1080/14786419.2018
  • HelboeP, ArendsP. Xanthone studies. VI. Synthesis of jacareubin, isojacareubin, and some hydroxyxanthones with allylic substituents. Arch Pharm Chemi Sci Ed. 1973;1:549–555.
  • Jean-MichelO, CécileM, Jean-JacquesH, et al. First 2-hydroxy-3-methylbut-3-enyl substituted xanthones isolated from plants: structure elucidation, synthesis and antifungal activity. Nat Prod Res. 2003;17:195–199. doi:10.1080/105756302100004080812737404
  • KlaiklayS, SukpondmaY, RukachaisirikulV, PhongpaichitHS. Friedolanostanes and xanthones from the twigs of Garcinia hombroniana. Phytochemistry. 2013;85:161–166. doi:10.1016/j.phytochem.2012.08.02023022020
  • YangNY, HanQB, CaoXW, et al. Two new xanthones isolated from the stem bark of Garcinia lancilimba. Chem Pharm Bull. 2007;55:950–952. doi:10.1248/cpb.55.95017541202
  • MulhollandDA, MwangiEM, DlovaNC, PlantN, CrouchNR, CoombesPH. Non-toxic melanin production inhibitors from Garcinia livingstonei (Clusiaceae). J Ethnopharmacol. 2013;149:570–575. doi:10.1016/j.jep.2013.07.02323891889
  • NontakhamJ, CharoenramN, UpamaiW, TaweechotipatrM, SuksamrarnS. Anti-helicobacter pylori xanthones of Garcinia fusca. Arch Pharm Res. 2014;37:972–977. doi:10.1007/s12272-013-0266-424155023
  • JiY, ZhangR, ZhangC, et al. Cytotoxic xanthones from hypericum stellatum, an ethnomedicine in Southwest China. Molecules. 2019;24:3568–3579. doi:10.3390/molecules24193568
  • YuanX, ChenH, LiX, et al. Inhibition of protein kinase C by isojacareubin suppresses hepatocellular carcinoma metastasis and induces apoptosis in vitro and in vivo. Sci Rep. 2015;5:12889–12902. doi:10.1038/srep1288926245668
  • Ul BariW, ZahoorM, ZebA, et al. Isolation, pharmacological evaluation and molecular docking studies of bioactive compounds from Grewia optiva. Drug Des Devel Ther. 2019;13:3029–3036. doi:10.2147/DDDT.S220510
  • LedermannJA. Extending the scope of PARP inhibitors in ovarian cancer. Lancet Oncol. 2019;20:470–472. doi:10.1016/S1470-2045(19)30019-130880068
  • DhaniNC, OzaAM. Targeting angiogenesis: taming the medusa of ovarian cancer. Hematol Oncol Clin North Am. 2018;32:1041–1055. doi:10.1016/j.hoc.2018.07.00830390759
  • WuD, LiuZ, LiJ, et al. Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int. 2019;19:43–51. doi:10.1186/s12935-019-0762-930858760
  • LiuL, WuN, WangY, et al. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K/AKT oncogenic signaling. J Exp Clin Cancer Res. 2019;38:106–119. doi:10.1186/s13046-019-1061-y30819230
  • ChenS, CavazzaE, BarlierC, et al. Beside P53 and PTEN: identification of molecular alterations of the RAS/MAPK and PI3K/AKT signaling pathways in high-grade serous ovarian carcinomas to determine potential novel therapeutic targets. Oncol Lett. 2016;12:3264–3272. doi:10.3892/ol.2016.508327899992
  • NewmanDJ, CraggGM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. doi:10.1021/acs.jnatprod.9b0128532162523
  • ZengZ, LinC, WangS, et al. Suppressive activities of mangiferin on human epithelial ovarian cancer. Phytomedicine. 2020;76:153267. doi:10.1016/j.phymed.2020.15326732570111
  • LiuXJ, HuX, PengXH, et al. Polyprenylated xanthones from the twigs and leaves of Garcinia nujiangensisand their cytotoxic evaluation. Bioorg Chem. 2020;94:103370–103382. doi:10.1016/j.bioorg.2019.10337031699388
  • ZhangL, FengJ, KongS, et al. A novel compound from Garcinia nujiangensis, suppresses cervical cancer growth by targeting hnRNPK. Cancer Lett. 2016;380:447–456. doi:10.1016/j.canlet.2016.07.00527424288
  • ZhangL, KongSY, ZhengZQ, et al. A novel compound derived from garcinia nujiangensis, induces caspase-dependent apoptosis in cervical cancer through the ROS/JNK pathway. Molecules. 2016;21:1360–1372. doi:10.3390/molecules21101360
  • LuY, CaiS, NieJ, et al. The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma. Biochem Pharmacol. 2016;100:61–72. doi:10.1016/j.bcp.2015.11.00426571438
  • FuchsY, StellerH. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–344. doi:10.1038/nrm399925991373
  • GuanLY, LuY. New developments in molecular targeted therapy of ovarian cancer. Discov Med. 2018;26:219–229.30695681
  • HuangTT, LampertEJ, CootsC, LeeJM. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin Cancer Biol. 2019;59:147–160. doi:10.1016/j.ctrv.2020.10202131128298
  • FranzeseE, CentonzeS, DianaA, et al. PARP inhibitors in ovarian cancer. Cancer Treat Rev. 2019;73:1–9. doi:10.1016/j.ctrv.2018.12.00230543930