179
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Phoenixin 14 Inhibits High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Experimental Mice

ORCID Icon, , , , &
Pages 3865-3874 | Published online: 22 Sep 2020

References

  • PuriP, SanyalAJ. Nonalcoholic fatty liver disease: definitions, risk factors, and workup. Clin Liver Dis (Hoboken). 2012;1(4):99–103. doi:10.1002/cld.8131186860
  • PerumpailBJ, KhanMA, YooER, CholankerilG, KimD, AhmedA. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol. 2017;23(47):8263–8276. doi:10.3748/wjg.v23.i47.826329307986
  • SmithBW, AdamsLA. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol. 2011;7(8):456–465. doi:10.1038/nrendo.2011.7221556019
  • PatilR, SoodGK. Non-alcoholic fatty liver disease and cardiovascular risk. World J Gastrointest Pathophysiol. 2017;8(2):51–58. doi:10.4291/wjgp.v8.i2.5128573067
  • FatmaU, SevilayS, SerpilE, SumeyyaA, FerahA, OmerA. The relationship between oxidative stress and nonalcoholic fatty liver disease: its effects on the development of nonalcoholic steatohepatitis. Redox Rep. 2013;18(4):127–133. doi:10.1179/1351000213Y.000000005023743495
  • DysonJK, AnsteeQM, McPhersonS. Non-alcoholic fatty liver disease: a practical approach to treatment. Frontline Gastroenterol. 2014;5(4):277–286. doi:10.1136/flgastro-2013-10040425285192
  • SmithBK, MarcinkoK, DesjardinsEM, LallyJS, FordRJ, SteinbergGR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016;311:E730–E740. doi:10.1152/ajpendo.00225.201627577854
  • XuD, XuM, JeongS, et al. The role of Nrf2 in liver disease: novel molecular mechanisms and therapeutic approaches. Front Pharmacol. 2019;9:1428. doi:10.3389/fphar.2018.0142830670963
  • YostenGL, LyuRM, HsuehAJ, et al. A novel reproductive peptide, phoenixin. J Neuroendocrinol. 2013;2013(25):206–215. doi:10.1111/j.1365-2826.2012.02381.x
  • SteinLM, HaddockCJ, SamsonWK, KolarGR, YostenGLC. The phoenixins: from discovery of the hormone to identification of the receptor and potential physiologic actions. Peptides. 2018;106:45–48. doi:10.1016/j.peptides.2018.06.00529933026
  • SchallaMA, StengelA. Phoenixin-A pleiotropic gut-brain peptide. Int J Mol Sci. 2018;19:6. doi:10.3390/ijms19061726
  • SchallaMA, StengelA. The role of phoenixin in behavior and food intake. Peptides. 2019;114:38–43. doi:10.1016/j.peptides.2019.04.00230953667
  • WangM, DengSP, ChenHP, et al. Phoenixin participated in regulation of food intake and growth in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol. 2018;226:36–44. doi:10.1016/j.cbpb.2018.07.00730114526
  • RajeswariJJ, UnniappanS. Phoenixin-20 stimulates mRNAs encoding hypothalamo-pituitary-gonadal hormones, is pro-vitellogenic, and promotes oocyte maturation in zebrafish. Sci Rep. 2020;10:6264. doi:10.1038/s41598-020-63226-x32286445
  • Szymańska-DębińskaT, Karkucińska-WięckowskaA, Piekutowska-AbramczukD, et al. Leigh disease due to SCO2 mutations revealed at extended autopsy. J Clin Pathol. 2015;68:397–399. doi:10.1136/jclinpath-2014-20260625720770
  • UllahK, Ur RahmanT, WuDD, et al. Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome. Clin Chim Acta. 2017;471:243–247. doi:10.1016/j.cca.2017.06.01328624500
  • McIlwraithEK, LoganathanN, BelshamDD. Phoenixin expression is regulated by the fatty acids palmitate, docosahexaenoic acid and oleate, and the endocrine disrupting chemical bisphenol a in immortalized hypothalamic neurons. Front Neurosci. 2018;15(12):838. doi:10.3389/fnins.2018.00838
  • SchallaM, PrinzP, FriedrichT, et al. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides. 2017;96:53–60. doi:10.1016/j.peptides.2017.08.00428844870
  • AsaiA, ChouPM, BuHF, et al. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice. Am J Physiol Gastrointest Liver Physiol. 2014;306:G496–G504. doi:10.1152/ajpgi.00291.201324436353
  • CanbayA, BechmannL, GerkenG. Lipid metabolism in the liver. Z Gastroenterol. 2007;45(1):35–41. doi:10.1055/s-2006-92736817236119
  • TilgH, MoschenAR, SzaboG. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2016;64:955–965. doi:10.1002/hep.2845626773297
  • ZhouZ, XuMJ, CaiY, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol. 2018;5(3):399–413. doi:10.1016/j.jcmgh.2018.01.00329552626
  • AlharthiJ, LatchoumaninO, GeorgeJ, EslamM. Macrophages in metabolic associated fatty liver disease. World J Gastroenterol. 2020;26(16):1861–1878. doi:10.3748/wjg.v26.i16.186132390698
  • ZengX, LiY, MaS, TangY, LiH. Phoenixin-20 ameliorates lipopolysaccharide-induced activation of microglial NLRP3 inflammasome. Neurotox Res. 2020;10:1007.
  • GarciaD, HellbergK, ChaixA, et al. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep. 2019;26(1):192–208.e6. doi:10.1016/j.celrep.2018.12.03630605676
  • FeigeJN, LagougeM, CantoC, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8:347–358. doi:10.1016/j.cmet.2008.08.01719046567
  • HouX, XuS, Maitland-ToolanKA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283:20015–20026. doi:10.1074/jbc.M80218720018482975
  • ChenXY, CaiCZ, YuML, et al. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol. 2019;25(45):6607–6618. doi:10.3748/wjg.v25.i45.660731832001
  • SalomoneF, BarbagalloI, GodosJ, et al. Silibinin restores NAD? Levels and induces the SIRT1/AMPK pathway in non-alcoholic fatty liver. Nutrients. 2017;9.
  • LiouCJ, DaiYW, WangCL, FangLW, HuangWC. Maslinic acid protects against obesity-induced nonalcoholic fatty liver disease in mice through regulation of the Sirt1/AMPK signaling pathway. FASEB J. 2019;33:11791–11803. doi:10.1096/fj.201900413RRR31361524
  • ColakY, YesilA, MutluHH, et al. A potential treatment of non-alcoholic fatty liver disease with SIRT1 activators. J Gastrointest Liver Dis GLD. 2014;23:311–319. doi:10.15403/jgld.2014.1121.233.yck
  • ChambelSS, Santos-GonçalvesA, DuarteTL. The dual role of Nrf2 in nonalcoholic fatty liver disease: regulation of antioxidant defenses and hepatic lipid metabolism. Biomed Res Int. 2015;2015:597134. doi:10.1155/2015/59713426120584
  • JooMS, KimWD, LeeKY, et al. Accumulation of Nrf2 by Phosphorylating at Serine 550. Mol Cell Biol. 2016;36(14):1931–1942. doi:10.1128/MCB.00118-1627161318
  • MoC, WangL, ZhangJ, et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal. 2014;20(4):574–588. doi:10.1089/ars.2012.511623875776
  • McIlwraithEK, LoganathanN, BelshamDD. Regulation of Gpr173 expression, a putative phoenixin receptor, by saturated fatty acid palmitate and endocrine-disrupting chemical bisphenol A through a p38-mediated mechanism in immortalized hypothalamic neurons. Mol Cell Endocrinol. 2019;485:54–60. doi:10.1016/j.mce.2019.01.02630716364