105
Views
4
CrossRef citations to date
0
Altmetric
Original Research

A Synthetic Peptide 2Abz23S29 Reduces Bacterial Titer and Induces Pro-Inflammatory Cytokines in a Murine Model of Urinary Tract Infection

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2797-2807 | Published online: 17 Jul 2020

References

  • FoxmanB. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28:1–13. doi:10.1016/j.idc.2013.09.00324484571
  • TerlizziME, GribaudoG, MaffeiME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566. doi:10.3389/fmicb.2017.0156628861072
  • WaltersMS, LaneMC, VigilPD, et al. Kinetics of uropathogenic Escherichia coli metapopulation movement during urinary tract infection. mBio. 2012;3(1):Pii: e00303–11. doi:10.1128/mBio.00303-11
  • Flores-MirelesAL, WalkerJN, CaparonM, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13:269–284. doi:10.1038/nrmicro343225853778
  • EngelsöyU, RangelI, DemirelI. Impact of proinflammatory cytokines on the virulence of uropathogenic Escherichia coli. Front Microbiol. 2019;10:1051. doi:10.3389/fmicb.2019.0105131143172
  • ChingC, SchwartzL, SpencerJD, et al. Innate immunity and urinary tract infection. Pediatr Nephrol. 2020;35:1183–1192. doi:10.1007/s00467-019-04269-931197473
  • BillipsBK, ForrestalSG, RycykMT, et al. Modulation of host innate immune response in the bladder by uropathogenic Escherichia coli. Infect Immun. 2007;75:5353–5360. doi:10.1128/IAI.00922-0717724068
  • IngersollMA, KlineKA, NielsenHV, et al. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol. 2008;10:2568–2578. doi:10.1111/j.1462-5822.2008.01230.x18754853
  • SivickKE, MobleyHL. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun. 2010;78:568–585. doi:10.1128/IAI.01000-0919917708
  • Pachón-IbáñezME, SmaniY, PachónJ, et al. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev. 2017;41:323–342. doi:10.1093/femsre/fux01228521337
  • BecknellB, SchwadererA, HainsDS, et al. Amplifying renal immunity: the role of antimicrobial peptides in pyelonephritis. Nat Rev Nephrol. 2015;11:642–655. doi:10.1038/nrneph.2015.10526149835
  • HancockR, HaneyE, GillE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321–334. doi:10.1038/nri.2016.2927087664
  • MookherjeeN, HancockRE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64:922–933. doi:10.1007/s00018-007-6475-617310278
  • DabirianS, TaslimiY, ZahedifardF, et al. Human Neutrophil Peptide-1 (HNP-1): a new anti-leishmanial drug candidate. PLoS Negl Trop Dis. 2013;7(10):e2491. doi:10.1371/journal.pntd.000249124147170
  • FruitwalaS, El-NaccacheDW, ChangTL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019;88:163–172. doi:10.1016/j.semcdb.2018.02.02329501617
  • LundyFT, NelsonJ, LockhartD, et al. Antimicrobial activity of truncated alpha-defensin (human neutrophil peptide (HNP)-1) analogues without disulphide bridges. Mol Immunol. 2008;45:190–193. doi:10.1016/j.molimm.2007.04.01817548109
  • WiegandI, HilpertK, HancockRE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–175. doi:10.1038/nprot.2007.52118274517
  • WangH, DongB, LouL. HNP-3 enhanced the antimicrobial activity of CIP by promoting ATP efflux from P. aeruginosa cells. Mol Biol Rep. 2011;38:2673–2678. doi:10.1007/s11033-010-0409-321107732
  • MosmannT. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-46606682
  • BlangoMG, OttEM, ErmanA, et al. Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs. PLoS One. 2014;9:e93327. doi:10.1371/journal.pone.009332724667805
  • PrasadSV, FiedorukK, DanilukT, PiktelE, BuckiR. Expression and function of host defense peptides at inflammation sites. Int J Mol Sci. 2020;21:104. doi:10.3390/ijms21010104
  • MilesK, ClarkeDJ, LuW, et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol. 2009;183:2122–2132. doi:10.4049/jimmunol.080418719596979
  • MaedaT, SakiyamaT, KanmuraS, et al. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis. Int J Mol Med. 2016;38:1777–1785. doi:10.3892/ijmm.2016.279527840892
  • KohlgrafKG, AckermannA, LuX, et al. Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice. Future Microbiol. 2010;5:115–125. doi:10.2217/fmb.09.10720020833
  • LinAE, BeasleyFC, OlsonJ, et al. Role of Hypoxia Inducible Factor-1α (HIF-1α) in innate defense against uropathogenic Escherichia coli infection. PLoS Pathog. 2015;11(4):e1004818. doi:10.1371/journal.ppat.100481825927232
  • CirlC, WieserA, YadavM, et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med. 2008;14:399–406. doi:10.1038/nm173418327267
  • HamiltonC, TanL, MiethkeT, et al. Immunity to uropathogens: the emerging roles of inflammasomes. Nat Rev Urol. 2017;14:284–295. doi:10.1038/nrurol.2017.2528266511
  • HashimotoS, UtoH, KanmuraS, et al. Human neutrophil peptide-1 aggravates dextran sulfate sodium-induced colitis. Inflamm Bowel Dis. 2012;18:667–675. doi:10.1002/ibd.2185521928371
  • ChingCB, GuptaS, LiB, et al. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 2018;93:1320–1329. doi:10.1016/j.kint.2017.12.00629475562
  • OlsonPD, HunstadDA. Subversion of Host Innate Immunity by Uropathogenic Escherichia coli. Pathogens. Pathogens. 2016;5(1):Pii: E2.
  • HunstadDA, JusticeSS, HungCS, et al. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun. 2005;73:3999–4006. doi:10.1128/IAI.73.7.3999-4006.200515972487
  • HilbertDW, PascalKE, LibbyEK, et al. Uropathogenic Escherichia coli dominantly suppress the innate immune response of bladder epithelial cells by a lipopolysaccharide- and Toll-like receptor 4-independent pathway. Microbes Infect. 2008;10:114–121. doi:10.1016/j.micinf.2007.10.01218248759
  • LloydAL, SmithSN, EatonKA, et al. Uropathogenic Escherichia coli suppresses the host inflammatory response via pathogenicity island genes sisA and sisB. Infect Immun. 2009;77:5322–5333. doi:10.1128/IAI.00779-0919797063
  • DuellBL, CareyAJ, TanCK, et al. Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection. J Immunol. 2012;188:781–792. doi:10.4049/jimmunol.110123122184725
  • OginoH, FujiiM, OnoM, et al. In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production. J Infect Chemother. 2009;15:168–173. doi:10.1007/s10156-009-0680-119554401
  • GoneauLW, HannanTJ, MacPheeRA, et al. Subinhibitory antibiotic therapy alters recurrent urinary tract infection pathogenesis through modulation of bacterial virulence and host immunity. mBio. 2015;6(2). doi:10.1128/mBio.00356-15.
  • ZussoM, LunardiV, FranceschiniD, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation. 2019;16(1):148. doi:10.1186/s12974-019-1538-931319868
  • VordenbäumenS, SchneiderM. Defensins: potential effectors in autoimmune rheumatic disorders. Polymers. 2011;3:1268–1281. doi:10.3390/polym3031268