226
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers

, , , , , & show all
Pages 5205-5215 | Published online: 25 Nov 2020

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.2155130620402
  • TorreLA, SiegelRL, WardEM, JemalA. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16–27. doi:10.1158/1055-9965.EPI-15-057826667886
  • JemalA, BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.21296855
  • PeerD, KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi:10.1038/nnano.2007.38718654426
  • HeY, SuZ, XueL, XuH, ZhangC. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J Control Release. 2016;10(229):80–92. doi:10.1016/j.jconrel.2016.03.001
  • DharS, GuFX, LangerR, FarokhzadOC, LippardSJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105(45):17356–17361. doi:10.1073/pnas.080915410518978032
  • MiY, ZhaoJ, FengSS. Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release. 2013;169(3):185–192. doi:10.1016/j.jconrel.2013.01.03523403395
  • MaB, ZhuangW, WangY, LuoR, WangY. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomater. 2018;1(70):186–196. doi:10.1016/j.actbio.2018.02.008
  • HuoQ, LiangY, LuW, et al. Integrated metalloproteinase, pH and glutathione responsive prodrug-based nanomedicine for efficient target chemotherapy. J Biomed Nanotechnol. 2019;15(8):1673–1687. doi:10.1166/jbn.2019.280131219020
  • LingL, IsmailM, ShangZ, HuY, LiB. Vitamin E-based prodrug self-delivery for nanoformulated irinotecan with synergistic antitumor therapeutics. Int J Pharm. 2020;15(577):119049. doi:10.1016/j.ijpharm.2020.119049
  • LuoC, SunJ, SunB, HeZ. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci. 2014;35(11):556–566. doi:10.1016/j.tips.2014.09.00825441774
  • MaZY, WangDB, SongXQ, et al. Chlorambucil-conjugated platinum(IV) prodrugs to treat triple-negative breast cancer in vitro and in vivo. Eur J Med Chem. 2018;5(157):1292–1299. doi:10.1016/j.ejmech.2018.08.065
  • BurkePJ, KochTH. Design, synthesis, and biological evaluation of doxorubicin-formaldehyde conjugates targeted to breast cancer cells. J Med Chem. 2004;47(5):1193–1206. doi:10.1021/jm030352r14971899
  • NanY. Lung carcinoma therapy using epidermal growth factor receptor-targeted lipid polymeric nanoparticles co-loaded with cisplatin and doxorubicin. Oncol Rep. 2019;42(5):2087–2096.31545462
  • TaratulaO, GarbuzenkoOB, ChenAM, MinkoT. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target. 2011;19(10):900–914. doi:10.3109/1061186X.2011.62240421981718
  • XuC, WangY, GuoZ, et al. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release. 2019;10(295):153–163. doi:10.1016/j.jconrel.2018.12.013
  • MacEwanSR, CallahanDJ, ChilkotiA. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine. 2010;5(5):793–806. doi:10.2217/nnm.10.5020662649
  • SheW, LuoK, ZhangC, et al. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials. 2013;34(5):1613–1623. doi:10.1016/j.biomaterials.2012.11.00723195490
  • SheW, LiN, LuoK, et al. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials. 2013;34(9):2252–2264. doi:10.1016/j.biomaterials.2012.12.01723298778
  • LiH, BianS, HuangY, LiangJ, FanY, ZhangX. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res A. 2014;102(1):150–159. doi:10.1002/jbm.a.3468023613258
  • LewisAD, HayesJD, WolfCR. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis. 1988;9(7):1283–1287. doi:10.1093/carcin/9.7.12832898306
  • LingX, TuJ, WangJ, et al. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano. 2019;13(1):357–370. doi:10.1021/acsnano.8b0640030485068
  • ZhangR, RuY, GaoY, LiJ, MaoS. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des Devel Ther. 2017;5(11):2631–2642. doi:10.2147/DDDT.S143047
  • JohnstoneTC, LippardSJ. The effect of ligand lipophilicity on the nanoparticle encapsulation of Pt(IV) prodrugs. Inorg Chem. 2013;52(17):9915–9920. doi:10.1021/ic401064223859129
  • WangG, WangZ, LiC, et al. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018;106:275–284. doi:10.1016/j.biopha.2018.06.13729966971
  • YuW, LiuC, LiuY, ZhangN, XuW. Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res. 2010;27(8):1584–1596. doi:10.1007/s11095-010-0149-z20422265
  • BaekJS, ChoCW. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget. 2017;8(18):30369–30382. doi:10.18632/oncotarget.1615328423731
  • GuY, YangM, TangX, et al. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. J Nanobiotechnology. 2018;16(1):68.30217198
  • ZhangM, ZhouX, WangB, et al. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma. J Control Release. 2013;168(3):251–261. doi:10.1016/j.jconrel.2013.03.02023567045
  • LiM, TangZ, LvS, et al. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials. 2014;35(12):3851–3864. doi:10.1016/j.biomaterials.2014.01.01824495487
  • XuZ, LiuS, KangY, WangM. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy. Nanoscale. 2015;7(13):5859–5868. doi:10.1039/C5NR00297D25757484
  • GaoDY, TsTL, SungYC, et al. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials. 2015;67:194–203. doi:10.1016/j.biomaterials.2015.07.03526218745
  • CaiL, XuG, ShiC, GuoD, WangX, LuoJ. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37:456–468. doi:10.1016/j.biomaterials.2014.10.04425453973
  • NiXL, ChenLX, ZhangH, et al. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv. 2017;24(1):1501–1512. doi:10.1080/10717544.2017.138486228961023
  • LiF, MeiH, GaoY, et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials. 2017;145:56–71. doi:10.1016/j.biomaterials.2017.08.03028843733
  • WhangCH, YooE, HurSK, KimKS, KimD, JoS. A highly GSH-sensitive SN-38 prodrug with an “OFF-to-ON” fluorescence switch as a bifunctional anticancer agent. Chem Commun. 2018;54(65):9031–9034. doi:10.1039/C8CC05010D
  • LuoCQ, ZhouYX, ZhouTJ, et al. Reactive oxygen species-responsive nanoprodrug with quinone methides-mediated GSH depletion for improved chlorambucil breast cancers therapy. J Control Release. 2018;28(274):56–68. doi:10.1016/j.jconrel.2018.01.034
  • ZhangQ, ZhangL, LiZ, XieX, GaoX, XuX. Inducing controlled release and increased tumor-targeted delivery of chlorambucil via albumin/liposome hybrid nanoparticles. AAPS PharmSciTech. 2017;18(8):2977–2986. doi:10.1208/s12249-017-0782-528477146
  • ChenK, CaiH, ZhangH, et al. Stimuli-responsive polymer-doxorubicin conjugate: antitumor mechanism and potential as nano-prodrug. Acta Biomater. 2019;15(84):339–355.
  • HaoDL, XieR, DeGJ, et al. pH-responsive artesunate polymer prodrugs with enhanced ablation effect on rodent xenograft colon cancer. Int J Nanomedicine. 2020;16(15):1771–1786. doi:10.2147/IJN.S242032
  • ZhongH, MuJ, DuY, et al. Acid-triggered release of native gemcitabine conjugated in polyketal nanoparticles for enhanced anticancer therapy. Biomacromolecules. 2020;21(2):803–814. doi:10.1021/acs.biomac.9b0149331995366
  • WangJ, WenY, ZhengL, et al. Characterization of chemical profiles of pH-sensitive cleavable D-gluconhydroximo-1, 5-lactam hydrolysates by LC-MS: A potential agent for promoting tumor-targeted drug delivery. J Pharm Biomed Anal. 2020;185:113244. doi:10.1016/j.jpba.2020.11324432193041
  • Hadipour MoghaddamSP, YazdimamaghaniM, GhandehariH. Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. J Control Release. 2018;28(282):62–75.
  • WangK, GuoC, ZouS, et al. Synthesis, characterization and in vitro/in vivo evaluation of novel reduction-sensitive hybrid nano-echinus-like nanomedicine. Artif Cells Nanomed Biotechnol. 2018;46(sup2):659–667. doi:10.1080/21691401.2018.146614729703084
  • RezaeiS, KashanianS, BahramiY, CruzLJ, MotieiM. Redox-sensitive and hyaluronic acid-functionalized nanoparticles for improving breast cancer treatment by cytoplasmic 17α-methyltestosterone delivery. Molecules. 2020;25:5. doi:10.3390/molecules25051181
  • KimH, SehgalD, KucabaTA, FergusonDM, GriffithTS, PanyamJ. Acidic pH-responsive polymer nanoparticles as a TLR7/8 agonist delivery platform for cancer immunotherapy. Nanoscale. 2018;10(44):20851–20862. doi:10.1039/C8NR07201A30403212
  • PoudelK, GautamM, MaharjanS, et al. Dual stimuli-responsive ursolic acid-embedded nanophytoliposome for targeted antitumor therapy. Int J Pharm. 2020;13(582):119330. doi:10.1016/j.ijpharm.2020.119330
  • OladipoAO, NkambuleTTI, MambaBB, MsagatiTAM. The stimuli-responsive properties of doxorubicin adsorbed onto bimetallic Au@Pd nanodendrites and its potential application as drug delivery platform. Mater Sci Eng C Mater Biol Appl. 2020;110:110696. doi:10.1016/j.msec.2020.11069632204011
  • HuCM, ZhangL. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–1111. doi:10.1016/j.bcp.2012.01.00822285912
  • GrecoF, VicentMJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–1213. doi:10.1016/j.addr.2009.05.00619699247
  • Eldar-BoockA, PolyakD, ScomparinA, Satchi-FainaroR. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr Opin Biotechnol. 2013;24(4):682–689. doi:10.1016/j.copbio.2013.04.01423726153
  • SongZ, ShiY, HanQ, DaiG. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2018;105:18–26. doi:10.1016/j.biopha.2018.05.09529843041
  • ChouTC, TalalayP. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55. doi:10.1016/0065-2571(84)90007-46382953
  • KalyaneD, RavalN, MaheshwariR, TambeV, KaliaK, TekadeRK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–1276. doi:10.1016/j.msec.2019.01.06630813007
  • XuY, WuH, HuangJ, et al. Probing and enhancing ligand-mediated active targeting of tumors using sub-5 nm ultrafine iron oxide nanoparticles. Theranostics. 2020;10(6):2479–2494. doi:10.7150/thno.3956032194814
  • HongY, CheS, HuiB, et al. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614. doi:10.1016/j.biopha.2019.10861430798129
  • LiS, WangL, LiN, LiuY, SuH. Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother. 2017;95:548–555. doi:10.1016/j.biopha.2017.08.09028869892
  • BianY, GuoD. Targeted therapy for hepatocellular carcinoma: co-delivery of sorafenib and curcumin using lactosylated ph-responsive nanoparticles. Drug Des Devel Ther. 2020;18(14):647–659. doi:10.2147/DDDT.S238955