129
Views
10
CrossRef citations to date
0
Altmetric
Hypothesis

Plasmapheresis, Anti-ACE2 and Anti-FcγRII Monoclonal Antibodies: A Possible Treatment for Severe Cases of COVID-19

ORCID Icon & ORCID Icon
Pages 2607-2611 | Published online: 06 Jul 2020

References

  • GorbalenyaAE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020.
  • LuH, StrattonCW, TangYW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020.
  • WangC, HorbyPW, HaydenFG, GaoGF. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470–473. doi:10.1016/S0140-6736(20)30185-9
  • WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19: World Health Organization; 2020 Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Accessed 313, 2020.
  • LiW, MooreMJ, VasilievaN, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. doi:10.1038/nature0214514647384
  • LiW, ZhangC, SuiJ, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634–1643. doi:10.1038/sj.emboj.760064015791205
  • LiF, LiW, FarzanM, HarrisonSC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–1868. doi:10.1126/science.111648016166518
  • HoffmannM, Kleine-WeberH, SchroederS, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2). doi:10.1016/j.cell.2020.02.052.
  • ZhouP, YangXL, WangXG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-732015507
  • YipMS, LeungNHL, CheungCY, et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J. 2014;11(1):82. doi:10.1186/1743-422X-11-8224885320
  • WangS-F, TsengS-P, YenC-H, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451(2):208–214. doi:10.1016/j.bbrc.2014.07.09025073113
  • JaumeM, YipMS, CheungCY, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH-and cysteine protease-independent FcγR pathway. J Virol. 2011;85(20):10582–10597. doi:10.1128/JVI.00671-1121775467
  • PeirisJS, CheungCY, LeungCY, NichollsJM. Innate immune responses to influenza A H5N1: friend or foe? Trends Immunol. 2009;30(12):574–584. doi:10.1016/j.it.2009.09.00419864182
  • MorensDM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis. 1994;19(3):500–512. doi:10.1093/clinids/19.3.5007811870
  • SullivanNJ. Antibody-mediated enhancement of viral disease. Curr Top Microbiol Immunol. 2001;260:145–169. doi:10.1007/978-3-662-05783-4_811443872
  • TakadaA, KawaokaY. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol. 2003;13(6):387–398. doi:10.1002/rmv.40514625886
  • WallsAC, ParkYJ, TortoriciMA, WallA, McGuireAT, StructureVD. Function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. doi:10.1016/j.cell.2020.02.05832155444
  • GellerC, VarbanovM, DuvalRE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4(11):3044–3068. doi:10.3390/v411304423202515
  • GlowackaI, BertramS, MullerMA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122–4134. doi:10.1128/JVI.02232-1021325420
  • MalikYA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020;42(1):3–11.32342926
  • ZhouF, YuT, DuR, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
  • HuTY, FriemanM, WolframJ. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol. 2020;15(4):247–249. doi:10.1038/s41565-020-0674-932203437
  • ToKK, TsangOT, LeungWS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565–574. doi:10.1016/S1473-3099(20)30196-132213337
  • DouzinasEE, MarkakisK, KarabinisA, MandalakiT, BilalisD, FessasP. Early plasmapheresis in patients with thrombotic thrombocytopenic purpura. Crit Care Med. 1992;20(1):57–61. doi:10.1097/00003246-199201000-000171729046
  • KohliRS, BleibelW, ShettyA, DhanjalU. Plasmapheresis in the treatment of hypertriglyceridemic pancreatitis with ARDS. Dig Dis Sci. 2006;51(12):2287–2291. doi:10.1007/s10620-006-9315-x17120148
  • ZemansRL, MatthayMA. What drives neutrophils to the alveoli in ARDS? Thorax. 2017;72(1):1–3. doi:10.1136/thoraxjnl-2016-20917027974631
  • UniProtKB - Q9BYF1 (ACE2_HUMAN): UniProt. Available from: https://www.uniprot.org/uniprot/Q9BYF1. Accessed 313, 2020.
  • JordanRE, AdabP, ChengKK. Covid-19: risk factors for severe disease and death. BMJ. 2020;368:m1198. doi:10.1136/bmj.m119832217618
  • WangK, ChenW, ZhouY-S, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020;2020:988345.
  • ChanKY, XuMS, ChingJC, et al. Association of a single nucleotide polymorphism in the CD209 (DC-SIGN) promoter with SARS severity. Hong Kong Med J. 2010;16(5 Suppl 4):37–42.20864747