128
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Bone-Targeting Liposome-Encapsulated Salvianic Acid A Improves Nonunion Healing Through the Regulation of HDAC3-Mediated Endochondral Ossification

, ORCID Icon, , , , , , , , , , , , & ORCID Icon show all
Pages 3519-3533 | Published online: 26 Aug 2020

References

  • Gomez-BarrenaE, RossetP, LozanoD, StanoviciJ, ErmthallerC, GerbhardF. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101. doi:10.1016/j.bone.2014.07.03325093266
  • ClaesL, RecknagelS, IgnatiusA. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–143. doi:10.1038/nrrheum.2012.122293759
  • WestgeestJ, WeberD, DulaiSK, BergmanJW, BuckleyR, BeaupreLA. Factors associated with development of nonunion or delayed healing after an open long bone fracture: a prospective cohort study of 736 subjects. J Orthop Trauma. 2016;30(3):149–155. doi:10.1097/BOT.000000000000048826544953
  • MillsL, TsangJ, HopperG, KeenanG, SimpsonAH. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016;5(10):512–519. doi:10.1302/2046-3758.510.BJR-2016-013827784669
  • EinhornTA, GerstenfeldLC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54. doi:10.1038/nrrheum.2014.16425266456
  • KostenuikP, MirzaFM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthopaedic Res. 2017;35(2):213–223. doi:10.1002/jor.23460
  • ConwayJD. Autograft and nonunions: morbidity with intramedullary bone graft versus iliac crest bone graft. Orthop Clin North Am. 2010;41(1):75–84. (). doi:10.1016/j.ocl.2009.07.00619931055
  • MarshJL. Principles of bone grafting: non-union, delayed union. Surgery. 2006;24(6):207–210. doi:10.1383/surg.2006.24.6.207
  • ObertL, DeschaseauxF, GarbuioP. Critical analysis and efficacy of BMPs in long bones non-union. Injury. 2005;36(Suppl 3):S3842. doi:10.1016/j.injury.2005.07.033
  • von RudenC, MorgensternM, HierholzerC, et al. The missing effect of human recombinant Bone Morphogenetic Proteins BMP-2 and BMP-7 in surgical treatment of aseptic forearm nonunion. Injury. 2015.
  • LeightonR, WatsonJT, GiannoudisP, PapakostidisC, HarrisonA, SteenRG. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis. Injury. 2017;48(7):1339–1347. doi:10.1016/j.injury.2017.05.01628532896
  • BiglariB, YildirimTM, SwingT, BrucknerT, DannerW, MoghaddamA. Failed treatment of long bone nonunions with low intensity pulsed ultrasound. Arch Orthop Trauma Surg. 2016;136(8):1121–1134. doi:10.1007/s00402-016-2501-127383218
  • LiuY, JiaZ, AkhterMP, et al. Bone-targeting liposome formulation of Salvianic acid A accelerates the healing of delayed fracture Union in Mice. Nanomedicine. 2018;14(7):2271–2282. doi:10.1016/j.nano.2018.07.01130076934
  • YangY, SuY, WangD, et al. Tanshinol attenuates the deleterious effects of oxidative stress on osteoblastic differentiation via Wnt/FoxO3a signaling. Oxid Med Cell Longev. 2013;2013:351895. doi:10.1155/2013/35189524489983
  • CuiL, LiuYY, WuT, AiCM, ChenHQ. Osteogenic effects of D+beta-3,4-dihydroxyphenyl lactic acid (salvianic acid A, SAA) on osteoblasts and bone marrow stromal cells of intact and prednisone-treated rats. Acta Pharmacol Sin. 2009;30(3):321–332. doi:10.1038/aps.2009.919262556
  • ChenG, ZhangX, LinH, HuangG, ChenY, CuiL. Tanshinol alleviates osteoporosis and myopathy in glucocorticoid-treated rats. Planta Med. 2017.
  • YangY, SuY, WangD, et al. Tanshinol rescues the impaired bone formation elicited by glucocorticoid involved in KLF15 Pathway. Oxid Med Cell Longev. 2016;2016:1092746. doi:10.1155/2016/109274627051474
  • YangYJ, ZhuZ, WangDT, et al. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARgamma2 signaling in GIO rats. Acta Pharmacol Sin. 2018;39(4):633–641. doi:10.1038/aps.2017.13429323335
  • KakarS, EinhornTA, VoraS, et al. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Mineral Res. 2007;22(12):1903–1912. doi:10.1359/jbmr.070724
  • MarsellR, EinhornTA. The biology of fracture healing. Injury. 2011;42(6):551–555. doi:10.1016/j.injury.2011.03.03121489527
  • BahneyCS, ZondervanRL, AllisonP, et al. Cellular biology of fracture healing. J Orthopaedic Res. 2019;37(1):35–50. doi:10.1002/jor.24170
  • CarpioLR, BradleyEW, McGee-LawrenceME, et al. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Sci Signal. 2016;9(440):ra79. doi:10.1126/scisignal.aaf327327507649
  • CantleyMD, ZannettinoAC, BartoldPM, FairlieDP, HaynesDR. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone. 2017;95:162–174. doi:10.1016/j.bone.2016.11.02827913271
  • McGee-LawrenceME, CarpioLR, SchulzeRJ, et al. Hdac3 deficiency increases marrow adiposity and induces lipid storage and glucocorticoid metabolism in osteochondroprogenitor cells. J Bone Mineral Res. 2016;31(1):116–128. doi:10.1002/jbmr.2602
  • BradnerJE, WestN, GrachanML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6(3):238–243. doi:10.1038/nchembio.31320139990
  • WangZ, ZangC, CuiK, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138(5):1019–1031. doi:10.1016/j.cell.2009.06.04919698979
  • BradleyEW, CarpioLR, van WijnenAJ, McGee-LawrenceME, WestendorfJJ. Histone deacetylases in bone development and skeletal disorders. Physiol Rev. 2015;95(4):1359–1381. doi:10.1152/physrev.00004.201526378079
  • KleinschmidtK, PloegerF, NickelJ, GlockenmeierJ, KunzP, RichterW. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 2013;34(24):5926–5936. doi:10.1016/j.biomaterials.2013.04.02923680368
  • KleinschmidtK, Wagner-EckerM, BartekB, HolschbachJ, RichterW. Superior angiogenic potential of GDF-5 and GDF-5(V453/V456) compared with BMP-2 in a rabbit long-bone defect model. J Bone Joint Surg Am. 2014;96(20):1699–1707. doi:10.2106/JBJS.M.0146225320196
  • OmlorGW, KleinschmidtK, GantzS, SpeicherA, GuehringT, RichterW. Increased bone formation in a rabbit long-bone defect model after single local and single systemic application of erythropoietin. Acta Orthop. 2016;87(4):425–431.27348783
  • BulutO, ErogluM, OzturkH, TezerenG, BulutS, KoptagelE. Extracorporeal shock wave treatment for defective nonunion of the radius: a rabbit model. J Orthop Surg. 2006;14(2):133–137. doi:10.1177/230949900601400205
  • LinJP, ShiZJ, ShenNJ, WangJ, LiZM, XiaoJ. Serum N-terminal telopeptide of type I collagen as an early marker of fracture nonunion in rabbits. Exp Ther Med. 2016;12(6):3595–3601. doi:10.3892/etm.2016.383928105092
  • ChenF, JiaZ, RiceKC, ReinhardtRA, BaylesKW, WangD. The development of dentotropic micelles with biodegradable tooth-binding moieties. Pharm Res. 2013;30(11):2808–2817. doi:10.1007/s11095-013-1105-523765401
  • ChenF, JiaZ, RiceKC, ReinhardtRA, BaylesKW, WangD. The development of drug-free therapy for prevention of dental caries. Pharm Res. 2014;31(11):3031–3037. doi:10.1007/s11095-014-1396-124831311
  • ColeLE, Vargo-GogolaT, RoederRK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99(Pt A):12–27. doi:10.1016/j.addr.2015.10.00526482186
  • WangD, MillerS, SimaM, KopečkováP, KopečekJ. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjug Chem. 2003;14(5):853–859. doi:10.1021/bc034090j13129387
  • KharazmiM, HallbergP, WarfvingeG, MichaelssonK. Risk of atypical femoral fractures and osteonecrosis of the jaw associated with alendronate use compared with other oral bisphosphonates. Rheumatology. 2014;53(10):1911–1913. doi:10.1093/rheumatology/keu28625099769
  • SaitoT, FukaiA, MabuchiA, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med. 2010;16(6):678–686. doi:10.1038/nm.214620495570
  • BradleyEW, CarpioLR, WestendorfJJ. Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem. 2013;288(14):9572–9582. doi:10.1074/jbc.M112.42372323408427
  • McGee-LawrenceME, BradleyEW, DudakovicA, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013;52(1):296–307. doi:10.1016/j.bone.2012.10.01523085085
  • BhaskaraS, ChylaBJ, AmannJM, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30(1):61–72. doi:10.1016/j.molcel.2008.02.03018406327
  • BhaskaraS, KnutsonSK, JiangG, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18(5):436–447. doi:10.1016/j.ccr.2010.10.02221075309
  • LuoS, YangY, ChenJ, et al. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish. J Orthopaedic Translation. 2016;4:35–45. doi:10.1016/j.jot.2015.07.002