143
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Identification of a Novel c-Myc Inhibitor 7594-0037 by Structure-Based Virtual Screening and Investigation of Its Anti-Cancer Effect on Multiple Myeloma

, , , , , , & ORCID Icon show all
Pages 3983-3993 | Published online: 28 Sep 2020

References

  • GuoJ, HaoJ, JiangH, et al. Proteasome activator subunit 3 promotes pancreatic cancer growth via c-Myc-glycolysis signaling axis. Cancer Lett. 2017;386:161–167. doi:10.1016/j.canlet.2016.08.01827756569
  • Gomez-CuretI, PerkinsRS, BennettR, FeidlerKL, DunnSP, KruegerLJ. c-Myc inhibition negatively impacts lymphoma growth. J Pediatr Surg. 2006;41:207–211; discussion 207–211. doi:10.1016/j.jpedsurg.2005.10.025
  • SubramaniamKS, OmarIS, KwongSC, et al. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway. Am J Cancer Res. 2016;6:200–213.27186396
  • PagnanoKB, VassalloJ, Lorand-MetzeI, CostaFF, SaadST. p53, Mdm2, and c-Myc overexpression is associated with a poor prognosis in aggressive non-Hodgkin’s lymphomas. Am J Hematol. 2001;67:84–92. doi:10.1002/ajh.108411343379
  • McNeilCM, SergioCM, AndersonLR, et al. c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol. 2006;102:147–155. doi:10.1016/j.jsbmb.2006.09.02817052904
  • ProchownikEV, VogtPK. Therapeutic Targeting of Myc. Genes Cancer. 2010;1:650–659. doi:10.1177/194760191037749421132100
  • HuY, YuK, WangG, et al. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell. Biochem Pharmacol. 2018;150:280–292. doi:10.1016/j.bcp.2018.02.02329475060
  • ChngWJ, HuangGF, ChungTH, et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia. 2011;25:1026–1035. doi:10.1038/leu.2011.5321468039
  • SzaboAG, GangAO, PedersenMO, PoulsenTS, KlausenTW, NorgaardP. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leuk Lymphoma. 2016;57:2526–2534. doi:10.1080/10428194.2016.118727527243588
  • FletcherS, ProchownikEV. Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophys Acta. 2015;1849:525–543. doi:10.1016/j.bbagrm.2014.03.00524657798
  • DelmoreJE, IssaGC, LemieuxME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–917. doi:10.1016/j.cell.2011.08.01721889194
  • MorelloD, AsselinC, LavenuA, MarcuKB, BabinetC. Tissue-specific post-transcriptional regulation of c-myc expression in normal and H-2K/human c-myc transgenic mice. Oncogene. 1989;4:955–961.2668846
  • GregoryMA, QiY, HannSR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278:51606–51612. doi:10.1074/jbc.M31072220014563837
  • ZhangY, WangZ, LiX, MagnusonNS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene. 2008;27:4809–4819. doi:10.1038/onc.2008.12318438430
  • WelckerM, OrianA, JinJ, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A. 2004;101:9085–9090. doi:10.1073/pnas.040277010115150404
  • FarrellAS, SearsRC. MYC degradation. Cold Spring Harb Perspect Med. 2014;4.
  • NairSK, BurleySK. X-ray structures of myc-max and mad-max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003;112:193–205. doi:10.1016/S0092-8674(02)01284-912553908
  • FrankeNE, NiewerthD, AssarafYG, et al. Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia. 2012;26:757–768. doi:10.1038/leu.2011.25621941364
  • MeiPJ, BaiJ, MiaoFA, et al. Relationship between expression of XRCC1 and tumor proliferation, migration, invasion, and angiogenesis in glioma. Invest New Drugs. 2018.
  • WangT, PanD, ZhangY, et al. Luteolin antagonizes angiotensin II-dependent proliferation and collagen synthesis of cultured rat cardiac fibroblasts. Curr Pharm Biotechnol. 2015;16:430–439. doi:10.2174/138920101566614111014240225382303
  • CaoWJ, MaoLL, ZhengJN, PeiDS. p42.3: an abductor of cell cycle. Anticancer Agents Med Chem. 2015;15:157–162. doi:10.2174/187152061466614081820020225142318
  • YaoR, HanD, SunX, et al. Scriptaid inhibits cell survival, cell cycle, and promotes apoptosis in multiple myeloma via epigenetic regulation of p21. Exp Hematol. 2018;60:63–72. doi:10.1016/j.exphem.2017.12.01229305109
  • JiS, TangS, LiK, et al. Licoricidin inhibits the growth of SW480 human colorectal adenocarcinoma cells in vitro and in vivo by inducing cycle arrest, apoptosis and autophagy. Toxicol Appl Pharmacol. 2017;326:25–33. doi:10.1016/j.taap.2017.04.01528416456
  • LiL, XuT, DuY, et al. Salvianolic Acid A attenuates cell apoptosis, oxidative stress, Akt and NF-kappaB activation in Angiotensin-II induced murine peritoneal macrophages. Curr Pharm Biotechnol. 2016;17:283–290. doi:10.2174/13892010170316020615053526873077
  • LiuL, SunX, XieY, ZhuangY, YaoR, XuK. Anti-proliferative activity of HPOB against multiple myeloma cells via p21 transcriptional activation. Molecules. 2018;23.
  • YaoR, SunX, XieY, et al. Identification of a novel c-Myc inhibitor with antitumor effects on multiple myeloma cells. Biosci Rep. 2018;38.
  • CaseDA, CheathamTE 3rd, DardenT, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–1688. doi:10.1002/jcc.2029016200636
  • FrischMJ, TrucksGW, SchlegelHB, et al. Gaussian 09 Rev. A.02. Wallingford, CT; 2016.
  • GaoJ, ZhangY, ChenH, et al. Computational insights into the interaction mechanism of transcription cofactor vestigial-like protein 4 binding to TEA domain transcription factor 4 by molecular dynamics simulation and molecular mechanics generalized Born/surface area) calculation. J Biomol Struct Dyn. 2019;37(10):2538–2545. doi:10.1080/07391102.2018.149188930051771
  • ChenH, WangY, GaoZ, YangW, GaoJ. Assessing the performance of three resveratrol in binding with SIRT1 by molecular dynamics simulation and MM/GBSA methods: the weakest binding of resveratrol 3 to SIRT1 triggers a possibility of dissociation from its binding site. J Comput-Aided Mol Des. 2019;33:437–446. doi:10.1007/s10822-019-00193-030805760
  • GaoJ, LiangL, ChenQ, ZhangL, HuangT. Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A. J Comput-Aided Mol Des. 2018;32:547–557. doi:10.1007/s10822-018-0108-z29464467
  • YinX, GiapC, LazoJS, ProchownikEV. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene. 2003;22:6151–6159. doi:10.1038/sj.onc.120664113679853
  • WangH, HammoudehDI, FollisAV, et al. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther. 2007;6:2399–2408. doi:10.1158/1535-7163.MCT-07-000517876039
  • HolienT, VatsveenTK, HellaH, WaageA, SundanA. Addiction to c-MYC in multiple myeloma. Blood. 2012;120:2450–2453. doi:10.1182/blood-2011-08-37156722806891
  • AdachiY, Yoshio-HoshinoN, NishimotoN. Gene therapy for multiple myeloma. Curr Gene Ther. 2008;8:247–255. doi:10.2174/15665230878516068318691020
  • ThomasLR, TanseyWP. Proteolytic control of the oncoprotein transcription factor Myc. Adv Cancer Res. 2011;110:77–106.21704229