2,348
Views
147
CrossRef citations to date
0
Altmetric
Review

Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: Advantages and Disadvantages

ORCID Icon & ORCID Icon
Pages 3271-3289 | Published online: 12 Aug 2020

References

  • CarazoE, Borrego‐SánchezA, García‐VillénF, et al. Advanced inorganic nanosystems for skin drug delivery. Chemical Record. 2018;18:891–899. doi:10.1002/tcr.20170006129314634
  • BaroliB. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci. 2010;99(1):21–50. doi:10.1002/jps.2181719670463
  • KhandavilliS, PanchagnulaR. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Investigative Dermatol. 2007;127(1):154–162. doi:10.1038/sj.jid.5700485
  • GhasemiyehP, AzadiA, DaneshamouzS, HeidariR, AzarpiraN, Mohammadi-SamaniS. Cyproterone acetate-loaded nanostructured lipid carriers: effect of particle size on skin penetration and follicular targeting. Pharm Dev Technol. 2019;24(7):812–823. doi:10.1080/10837450.2019.159613330889371
  • LauterbachA, Müller-GoymannCC. Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream. Eur J Pharm Biopharm. 2014;88(3):614–624. doi:10.1016/j.ejpb.2014.10.00125460145
  • NeubertRH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur j Pharm Biopharm. 2011;77(1):1–2. doi:10.1016/j.ejpb.2010.11.00321111043
  • PatzeltA, MakWC, JungS, et al. Do nanoparticles have a future in dermal drug delivery? J Controlled Release. 2017;246:174–182. doi:10.1016/j.jconrel.2016.09.015
  • FangC-L, AljuffaliIA, LiY-C, FangJ-Y. Delivery and targeting of nanoparticles into hair follicles. Ther Deliv. 2014;5(9):991–1006. doi:10.4155/tde.14.6125375342
  • PaudelKS, MilewskiM, SwadleyCL, BrogdenNK, GhoshP, StinchcombAL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010;1(1):109–131. doi:10.4155/tde.10.1621132122
  • GiannosSA. Identifying present challenges to reliable future transdermal drug delivery products. Ther Deliv. 2015;6(8):1033–1041. doi:10.4155/tde.15.6226419262
  • ThiagarajanP. Nanoemulsions for drug delivery through different routes. Res Biotechnol. 2011;2:3.
  • LovelynC, AttamaAA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol. 2011;2(05):626. doi:10.4236/jbnb.2011.225075
  • AbdE, NamjoshiS, MohammedYH, RobertsMS, GriceJE. Synergistic skin penetration enhancer and nanoemulsion formulations promote the human epidermal permeation of caffeine and naproxen. J Pharm Sci. 2015.
  • BaspinarY, Borchert-H-H. Penetration and release studies of positively and negatively charged nanoemulsions − is there a benefit of the positive charge? Int J Pharm. 2012;430(12):247–252. doi:10.1016/j.ijpharm.2012.03.04022486953
  • HoellerS, SpergerA, ValentaC. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370(12):181–186. doi:10.1016/j.ijpharm.2008.11.01419073240
  • LuesakulU, PuthongS, SansanaphongprichaK, MuangsinN. Quaternized chitosan-coated nanoemulsions: a novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of plai extract. Carbohydr Polym. 2020;230:115625. doi:10.1016/j.carbpol.2019.11562531887856
  • CilurzoF, Chiara CristianoM, Di MarzioL, et al. Influence of the supramolecular micro-assembly of multiple emulsions on their biopharmaceutical features and in vivo therapeutic response. Curr Drug Targets. 2015;16(14):1612–1622. doi:10.2174/13894501161415111912423426601721
  • ShahP, BhalodiaD, ShelatP. Nanoemulsion: a pharmaceutical review. Systematic Rev Pharmacy. 2010;1(1):24. doi:10.4103/0975-8453.59509
  • GarcêsA, AmaralM, LoboJS, SilvaA. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur J Pharm Sci. 2017.
  • GhasemiyehP, AzadiA, DaneshamouzS, SamaniSM. Cyproterone acetate-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): preparation and optimization. Trends Pharma Sci. 2017;3(4):275–286.
  • AroraR, KatiyarSS, KushwahV, JainS. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv. 2017;14(2):165–177. doi:10.1080/17425247.2017.126438627882780
  • BorgiaSL, RegehlyM, SivaramakrishnanR, et al. Lipid nanoparticles for skin penetration enhancement − correlation to drug localization within the particle matrix as determined by fluorescence and paraelectric spectroscopy. J Controlled Release. 2005;110(1):151–163. doi:10.1016/j.jconrel.2005.09.045
  • PokharkarVB, MendirattaC, KyadarkunteAY, BhosaleSH, BarhateGA. Skin delivery aspects of benzoyl peroxide-loaded solid lipid nanoparticles for acne treatment. Ther Deliv. 2014;5(6):635–652. doi:10.4155/tde.14.3125090278
  • ChantaburananT, TeeranachaideekulV, ChantasartD, JintapattanakitA, JunyaprasertVB. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J Colloid Interface Sci. 2017;504:247–256. doi:10.1016/j.jcis.2017.05.03828551519
  • FangJ-Y, FangC-L, LiuC-H, SuY-H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–640. doi:10.1016/j.ejpb.2008.05.00818577447
  • KelidariH, SaeediM, AkbariJ, et al. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2015;128:473–479. doi:10.1016/j.colsurfb.2015.02.04625797482
  • ChenJ, WeiN, Lopez-GarciaM, et al. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm. 2017;117:286–291. doi:10.1016/j.ejpb.2017.04.00828411056
  • JenningV, GyslerA, Schäfer-KortingM, GohlaSH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49(3):211–218. doi:10.1016/S0939-6411(99)00075-210799811
  • ÜnerM, WissingS, YenerG, MüllerR. Skin moisturizing effect and skin penetration of ascorbyl palmitate entrapped in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) incorporated into hydrogel. Die Pharmazie- Int J Pharm Sci. 2005;60(10):751–755.
  • SoutoE, AlmeidaA, MüllerR. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol. 2007;3(4):317–331. doi:10.1166/jbn.2007.049
  • GhasemiyehP, Mohammadi-SamaniS. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288. doi:10.4103/1735-5362.23515630065762
  • ÜnerM, KaramanEF, AydoğmuşZ. Solid lipid nanoparticles and nanostructured lipid carriers of loratadine for topical application: physicochemical stability and drug penetration through rat skin. Tropical J Pharm Res. 2014;13(5):653–660. doi:10.4314/tjpr.v13i5.1
  • ParkJ-H, BanS-J, AhmedT, et al. Development of DH-I-180-3 loaded lipid nanoparticle for photodynamic therapy. Int J Pharm. 2015;491(12):393–401. doi:10.1016/j.ijpharm.2015.07.00226149935
  • AhmadniaS, MoazeniM, Mohammadi-SamaniS, OryanA. In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. Exp Parasitol. 2013;135(2):314–319. doi:10.1016/j.exppara.2013.07.01723912040
  • LiuJ, HuW, ChenH, NiQ, XuH, YangX. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–195. doi:10.1016/j.ijpharm.2006.08.00716978810
  • PardeikeJ, SchwabeK, MüllerRH. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm. 2010;396(12):166–173. doi:10.1016/j.ijpharm.2010.06.00720541000
  • ZoubariG, StaufenbielS, VolzP, AlexievU, BodmeierR. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur J Pharm Biopharm. 2017;110:39–46. doi:10.1016/j.ejpb.2016.10.02127810471
  • MüllerRH, RadtkeM, WissingSA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131S55. doi:10.1016/S0169-409X(02)00118-7
  • KüchlerS, RadowskiMR, BlaschkeT, et al. Nanoparticles for skin penetration enhancement – a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm. 2009;71(2):243–250. doi:10.1016/j.ejpb.2008.08.01918796329
  • ŠtecováJ, MehnertW, BlaschkeT, et al. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: particle characterisation and skin uptake. Pharm Res. 2007;24(5):991–1000. doi:10.1007/s11095-006-9225-917372681
  • RibeiroLN, BreitkreitzMC, GuilhermeVA, et al. Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies. Eur J Pharm Sci. 2017;106:102–112. doi:10.1016/j.ejps.2017.05.06028558981
  • SchwarzJC, BaisaengN, HoppelM, LöwM, KeckCM, ValentaC. Ultra-small NLC for improved dermal delivery of coenzyme Q10. Int J Pharm. 2013;447(12):213–217. doi:10.1016/j.ijpharm.2013.02.03723438979
  • PatzeltA, RichterH, KnorrF, et al. Selective follicular targeting by modification of the particle sizes. J Controlled Release. 2011;150(1):45–48. doi:10.1016/j.jconrel.2010.11.015
  • RicciM, PugliaC, BoninaF, GiovanniCD, GiovagnoliS, RossiC. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies. J Pharm Sci. 2005;94(5):1149–1159. doi:10.1002/jps.2033515793804
  • MüllerR, PetersenR, HommossA, PardeikeJ. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–530. doi:10.1016/j.addr.2007.04.01217602783
  • SalaM, DiabR, ElaissariA, FessiH. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018;535(12):1–17. doi:10.1016/j.ijpharm.2017.10.04629111097
  • El MaghrabyGM, WilliamsAC, BarryBW. Can drug‐bearing liposomes penetrate intact skin? J Pharmacy Pharmacol. 2006;58(4):415–429. doi:10.1211/jpp.58.4.0001
  • ShahSM, AshtikarM, JainAS, et al. LeciPlex, invasomes, and liposomes: a skin penetration study. Int J Pharm. 2015;490(12):391–403. doi:10.1016/j.ijpharm.2015.05.04226002568
  • EgbariaK, RamachandranC, WeinerN. Topical delivery of ciclosporin: evaluation of various formulations using in vitro diffusion studies in hairless mouse skin. Skin Pharmacol Physiol. 1990;3(1):21–28.
  • LiebLM, RamachandranC, EgbariaK, WeinerN. Topical delivery enhancement with multilamellar liposomes into pilosebaceous units: I. In vitro evaluation using fluorescent techniques with the hamster ear model. J Investigative Dermatol. 1992;99(1):108–113. doi:10.1111/1523-1747.ep12611886
  • Di FrancescoM, PrimaveraR, FioritoS, et al. Acronychiabaueri analogue derivative-loaded ultradeformable vesicles: physicochemical characterization and potential applications. Planta Med. 2017;83(05):482–491. doi:10.1055/s-0042-11222527542175
  • CristianoMC, FroiioF, SpaccapeloR, et al. Sulforaphane-loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases. Pharmaceutics. 2020;12(1):6. doi:10.3390/pharmaceutics12010006
  • PaolinoD, CeliaC, TrapassoE, CilurzoF, FrestaM. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm. 2012;81(1):102–112.22414731
  • KatoA, IshibashiY, MiyakeY. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J Pharmacy Pharmacol. 1987;39(5):399–400. doi:10.1111/j.2042-7158.1987.tb03407.x
  • SakdisetP, KitaoY, TodoH, SugibayashiK. High-throughput screening of potential skin penetration-enhancers using stratum corneum lipid liposomes: preliminary evaluation for different concentrations of ethanol. J Pharm. 2017;2017.
  • DuangjitS, OpanasopitP, RojanarataT, NgawhirunpatT. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv. 2011;2011.
  • CeliaC, CilurzoF, TrapassoE, CoscoD, FrestaM, PaolinoD. Ethosomes® and transfersomes® containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed Microdevices. 2012;14(1):119–130. doi:10.1007/s10544-011-9590-y21960035
  • PaolinoD, CoscoD, CilurzoF, et al. Improved in vitro and in vivo collagen biosynthesis by asiaticoside-loaded ultradeformable vesicles. J Controlled Release. 2012;162(1):143–151. doi:10.1016/j.jconrel.2012.05.050
  • ChoiM, MaibachH. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol. 2005;18(5):209–219. doi:10.1159/00008666616015019
  • SchreierH, BouwstraJ. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Controlled Release. 1994;30(1):1–15. doi:10.1016/0168-3659(94)90039-6
  • GuterresSS, AlvesMP, PohlmannAR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:117739280700200002.
  • ManconiM, SinicoC, ValentiD, LoyG, FaddaAM. Niosomes as carriers for tretinoin. I. Preparation and properties. Int J Pharm. 2002;234(12):237–248. doi:10.1016/S0378-5173(01)00971-111839454
  • ParkH, ParkH, NaK. Dual Propionibacterium acnes therapy using skin penetration-enhanced liposomes loaded with a photosensitizer and an antibiotic. J Porphyr Phthalocyanines. 2015;19(08):956–966. doi:10.1142/S1088424615500686
  • VermaD, VermaS, BlumeG, FahrA. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm. 2003;55(3):271–277. doi:10.1016/S0939-6411(03)00021-312754000
  • BalakrishnanP, ShanmugamS, LeeWS, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(12):1–8. doi:10.1016/j.ijpharm.2009.04.02019394413
  • TavanoL, PicciN, IoeleG, MuzzalupoR. Tetracycline-niosomes versus tetracycline hydrochlo-ride-niosomes: how to modulate encapsulation and percutaneous permeation properties. J Drug. 2017;1(2):1–6.
  • MuzzalupoR, PérezL, PinazoA, TavanoL. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: skin penetration behavior and controlled drug release. Int J Pharm. 2017;529(12):245–252. doi:10.1016/j.ijpharm.2017.06.08328668583
  • BragagniM, ScozzafavaA, MastrolorenzoA, SupuranCT, MuraP. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy. Int J Pharm. 2015;494(1):258–263. doi:10.1016/j.ijpharm.2015.08.03626283280
  • El-MenshaweSF, HusseinAK. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm Dev Technol. 2013;18(4):779–786. doi:10.3109/10837450.2011.59816621913880
  • FangJ-Y, YuS-Y, WuP-C, HuangY-B, TsaiY-H. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm. 2001;215(12):91–99. doi:10.1016/S0378-5173(00)00669-411250095
  • EidRK, EssaEA, El MaghrabyGM. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm Dev Technol. 2018;1–9.28347192
  • JunyaprasertVB, SinghsaP, SuksiriworapongJ, ChantasartD. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm. 2012;423(2):303–311. doi:10.1016/j.ijpharm.2011.11.03222155414
  • ManconiM, SinicoC, ValentiD, LaiF, FaddaAM. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm. 2006;311(12):11–19. doi:10.1016/j.ijpharm.2005.11.04516439071
  • AmoabedinyG, HaghiralsadatF, NaderinezhadS, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: a comprehensive review. Int Jo Polymeric Materials Polymeric Biomaterials. 2018;67(6):383–400. doi:10.1080/00914037.2017.1332623
  • FangJ-Y, HongC-T, ChiuW-T, Wang-Y-Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm. 2001;219(12):61–72. doi:10.1016/S0378-5173(01)00627-511337166
  • NegiP, AggarwalM, SharmaG, et al. Niosome-based hydrogel of resveratrol for topical applications: an effective therapy for pain related disorder(s). Biomed Pharmacother. 2017;88:480–487. doi:10.1016/j.biopha.2017.01.08328126673
  • PatelV, SharmaOP, MehtaT. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv. 2018;15(4):351–368. doi:10.1080/17425247.2018.144402529465253
  • PiredduR, CaddeoC, ValentiD, et al. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids Surf B Biointerfaces. 2016;143:64–70. doi:10.1016/j.colsurfb.2016.03.02626998867
  • MüllerRH, GohlaS, KeckCM. State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9. doi:10.1016/j.ejpb.2011.01.00721266197
  • ShegokarR. What nanocrystals can offer to cosmetic and dermal formulations. Nanobiomater Galenic Formulations Cosmetics. 2016;69–91.
  • MitriK, ShegokarR, GohlaS, AnselmiC, MüllerRH. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm. 2011;420(1):141–146. doi:10.1016/j.ijpharm.2011.08.02621884768
  • DögeN, HönzkeS, SchumacherF, et al. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin-assessment by intradermal microdialysis and extraction from the different skin layers. J Controlled Release. 2016;242:25–34. doi:10.1016/j.jconrel.2016.07.009
  • PyoSM, HespelerD, KeckCM, MüllerRH. Dermal miconazole nitrate nanocrystals–formulation development, increased antifungal efficacy & skin penetration. Int J Pharm. 2017;531(1):350–359. doi:10.1016/j.ijpharm.2017.08.10828855137
  • PyoSM, MeinkeM, KeckCM, MüllerRH. Rutin − increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics. 2016;3(1):9. doi:10.3390/cosmetics3010009
  • YoshiokaC, ItoY, NagaiN. Enhanced percutaneous absorption of cilostazol nanocrystals using aqueous gel patch systems and clarification of the absorption mechanism. Exp Ther Med. 2018;15(4):3501–3508. doi:10.3892/etm.2018.582029545875
  • LuppiB, CerchiaraT, BigucciF, BasileR, ZecchiV. Polymeric nanoparticles composed of fatty acids and polyvinylalcohol for topical application of sunscreens. J Pharmacy Pharmacol. 2004;56(3):407–411. doi:10.1211/0022357022926
  • ChavesLL, SilveriA, VieiraAC, et al. pH-responsive chitosan based hydrogels affect the release of dapsone: design, set-up, and physicochemical characterization. Int J Biol Macromol. 2019;133:1268–1279. doi:10.1016/j.ijbiomac.2019.04.17831034906
  • GhasemiyehP, Mohammadi-SamaniS. Hydrogels as drug delivery systems; pros and cons. Trends Pharma Sci. 2019;5(1):7–24.
  • ZhangZ, TsaiPC, RamezanliT, Michniak‐KohnBB. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):205–218. doi:10.1002/wnan.121123386536
  • ChellappanDK, YeeNJ, Kaur Ambar Jeet SinghBJ, PanneerselvamJ, MadheswaranT, ChellianJ, et al. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther Deliv. 2019;10(5):281–293. doi:10.4155/tde-2019-001931094299
  • CovielloT, TrottaA, MarianecciC, et al. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surf B Biointerfaces. 2015;125:291–299. doi:10.1016/j.colsurfb.2014.10.06025524220
  • DaveK, Krishna VenugantiVV. Dendritic polymers for dermal drug delivery. Ther Deliv. 2017;8(12):1077–1096. doi:10.4155/tde-2017-009129125060
  • BathejaP, SheihetL, KohnJ, SingerAJ, Michniak-KohnB. Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J Controlled Release. 2011;149(2):159–167. doi:10.1016/j.jconrel.2010.10.005
  • SheihetL, ChandraP, BathejaP, DevoreD, KohnJ, MichniakB. Tyrosine-derived nanospheres for enhanced topical skin penetration. Int J Pharm. 2008;350(12):312–319. doi:10.1016/j.ijpharm.2007.08.02217897801
  • Rodríguez-CruzIM, MerinoV, MerinoM, DíezO, NácherA, Quintanar-GuerreroD. Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs Iontophoresis. J Microencapsulation. 2013;30(1):72–80. doi:10.3109/02652048.2012.70095622746545
  • Alvarez-RománR, NaikA, KaliaY, GuyRH, FessiH. Skin penetration and distribution of polymeric nanoparticles. J Controlled Release. 2004;99(1):53–62. doi:10.1016/j.jconrel.2004.06.015
  • BalzusB, SahleFF, HönzkeS, et al. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. Eur J Pharm Biopharm. 2017;115:122–130. doi:10.1016/j.ejpb.2017.02.00128189623
  • ShahPP, DesaiPR, PatelAR, SinghMS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33(5):1607–1617. doi:10.1016/j.biomaterials.2011.11.01122118820
  • TodoH, KimuraE, YasunoH, et al. Permeation pathway of macromolecules and nanospheres through skin. Biol Pharm Bull. 2010;33(8):1394–1399. doi:10.1248/bpb.33.139420686237
  • LeeP-W, PengS-F, SuC-J, et al. The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials. 2008;29(6):742–751. doi:10.1016/j.biomaterials.2007.10.03418001831
  • PivettaTP, SimõesS, AraújoMM, CarvalhoT, ArrudaC, MarcatoPD. Development of nanoparticles from natural lipids for topical delivery of thymol: investigation of its anti-inflammatory properties. Colloids Surf B Biointerfaces. 2018;164:281–290. doi:10.1016/j.colsurfb.2018.01.05329413607
  • MandawgadeSD, PatravaleVB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(12):132–138. doi:10.1016/j.ijpharm.2008.06.02818657601
  • PardeikeJ, HommossA, MüllerRH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(12):170–184. doi:10.1016/j.ijpharm.2008.10.00318992314
  • MuL, SprandoRL. Application of nanotechnology in cosmetics. Pharm Res. 2010;27(8):1746–1749. doi:10.1007/s11095-010-0139-120407919
  • BabaeiS, GhanbarzadehS, AdibZ, KouhsoltaniM, DavaranS, HamishehkarH. Enhanced skin penetration of lidocaine through encapsulation into nanoethosomes and nanostructured lipid carriers: a comparative study. Die Pharmazie- Int J Pharm Sci. 2016;71(5):247–251.
  • WolfM, KlangV, StojcicT, FuchsC, WolztM, ValentaC. NLC versus nanoemulsions: effect on physiological skin parameters during regular in vivo application and impact on drug penetration. Int J Pharm. 2018;549(12):343–351. doi:10.1016/j.ijpharm.2018.08.00730099212
  • AlyUF, Abou-TalebHA, AbdellatifAA, TolbaNS. Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug Des Devel Ther. 2019;13:1567. doi:10.2147/DDDT.S198413
  • MaoK-L, FanZ-L, YuanJ-D, et al. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf B Biointerfaces. 2017;160:704–714. doi:10.1016/j.colsurfb.2017.10.02929035818
  • PatelV, SharmaOP, MehtaTA. Impact of process parameters on particle size involved in media milling technique used for preparing clotrimazole nanocrystals for the management of cutaneous candidiasis. AAPS Pharm Sci Tech. 2019;20(5):175. doi:10.1208/s12249-019-1368-1