232
Views
5
CrossRef citations to date
0
Altmetric
Original Research

New Approach in Ocular Drug Delivery: In vitro and ex vivo Investigation of Cyclodextrin-Containing, Mucoadhesive Eye Drop Formulations

, , , , , ORCID Icon, ORCID Icon & show all
Pages 351-360 | Published online: 03 Feb 2021

References

  • MaharjanP, ChoKH, MaharjanA, ShinMC, MoonC, MinKA. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. Int J Pharm Investig. 2018. doi:10.1007/s40005-018-0404-6
  • AliJ, FazilM, QumbarM, KhanN, AliA. Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv. 2016;23(3):700–716. doi:10.3109/10717544.2014.923065
  • NayakK, MisraM. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564–1582. doi:10.1016/j.biopha.2018.08.13830257375
  • BíróT, AignerZ. Current approaches to use cyclodextrins and mucoadhesive polymers in ocular drug delivery—a mini-review. Sci Pharm. 2019;87(3):15. doi:10.3390/scipharm87030015
  • PatelA. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47. doi:10.5497/wjp.v2.i2.4725590022
  • YellepeddiVK, PalakurthiS. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther. 2016;32(2):67–82. doi:10.1089/jop.2015.004726666398
  • GaudanaR, AnanthulaHK, ParenkyA, MitraAK. Ocular drug delivery. AAPS J. 2010;12(3):348–360. doi:10.1208/s12248-010-9183-320437123
  • PrausnitzMR, NoonanJS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–1488. doi:10.1021/js980259410189253
  • TorrecillaJ, Del Pozo-RodríguezA, Vicente-PascualM, SolinísMÁ, Rodríguez-GascónA. Targeting corneal inflammation by gene therapy: emerging strategies for keratitis. Exp Eye Res. 2018;176:130–140. doi:10.1016/j.exer.2018.07.00629981344
  • LeeVHL, RobinsonJR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol Ther. 1986;2(1):67–108. doi:10.1089/jop.1986.2.67
  • JohannsdottirS, JansookP, StefanssonE, et al. Topical drug delivery to the posterior segment of the eye: dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits. J Drug Deliv Sci Technol. 2018;45:449–454. doi:10.1016/j.jddst.2018.04.007
  • BíróT, HorvátG, Budai-SzűcsM, et al. Development of prednisolone-containing eye drop formulations by cyclodextrin complexation and antimicrobial, mucoadhesive biopolymer. Drug Des Devel Ther. 2018;12:2529–2537. doi:10.2147/DDDT.S165693
  • MazetR, ChoisnardL, LevillyD, WouessidjeweD, GèzeA. Investigation of combined cyclodextrin and hydrogel formulation for ocular delivery of dexamethasone acetate by means of experimental designs. Pharmaceutics. 2018;10(4):249. doi:10.3390/pharmaceutics10040249
  • LoftssonT, StefánssonE. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm. 2017;531(2):413–423. doi:10.1016/j.ijpharm.2017.04.01028391041
  • LoftssonT, DucheneD. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11. doi:10.1016/j.ijpharm.2006.10.04417137734
  • LoftssonT, StefánssonE. Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm. 1997;23(5):473–481. doi:10.3109/03639049709148496
  • SzenteL. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev. 1999;36(1):17–28. doi:10.1016/S0169-409X(98)00092-110837706
  • AdelliGR, BalguriSP, MajumdarS. Effect of cyclodextrins on morphology and barrier characteristics of isolated rabbit corneas. AAPS PharmSciTech. 2015;16(5):1220–1226. doi:10.1208/s12249-015-0315-z25771740
  • LoftssonT. Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Pharmazie. 2012;5:363–370. doi:10.1691/ph.2012.1698
  • HorvátG, Budai-SzűcsM, BerkóS, et al. Comparative study of nanosized cross-linked sodium-, linear sodium- and zinc-hyaluronate as potential ocular mucoadhesive drug delivery systems. Int J Pharm. 2015;494(1):321–328. doi:10.1016/j.ijpharm.2015.08.02426319587
  • HorvátG, GyarmatiB, BerkóS, et al. Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur J Pharm Sci. 2015;67:1–11. doi:10.1016/j.ejps.2014.10.01325445832
  • AndrewsGP, LavertyTP, JonesDS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–518. doi:10.1016/j.ejpb.2008.09.02818984051
  • KhutoryanskiyVV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–764. doi:10.1002/mabi.20100038821188688
  • CookMT, KhutoryanskiyVV. Mucoadhesion and mucosa-mimetic materials—a mini-review. Int J Pharm. 2015;495(2):991–998. doi:10.1016/j.ijpharm.2015.09.06426440734
  • ElbahwyIA, LupoN, IbrahimHM, et al. Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. Int J Pharm. 2018;541(1–2):72–80. doi:10.1016/j.ijpharm.2018.02.01929458206
  • MansuriS, KesharwaniP, JainK, TekadeRK, JainNK. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 2016;100:151–172. doi:10.1016/j.reactfunctpolym.2016.01.011
  • ChaS-H, LeeJ-S, OumB-S, KimC-D. Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro. Clin Experiment Ophthalmol. 2004;32(2):180–184. doi:10.1111/j.1442-9071.2004.00782.x15068436
  • YeJ, WuH, ZhangH, et al. Role of benzalkonium chloride in DNA strand breaks in human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2011;249(11):1681–1687. doi:10.1007/s00417-011-1755-021842132
  • PasquetJ, ChevalierY, PelletierJ, CouvalE, BouvierD, BolzingerM-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf a Physicochem Eng Asp. 2014;457:263–274. doi:10.1016/j.colsurfa.2014.05.057
  • Araki-SasakiK, OhashiY, SasabeT, HayashiK, WatanabeH, TanoY. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci. 1995;36(3):614–621.7534282
  • BanY, CooperLJ, FullwoodNJ, et al. Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting. Exp Eye Res. 2003;76(6):735–743. doi:10.1016/S0014-4835(03)00033-212742356
  • KürtiL, VeszelkaS, BocsikA, et al. The effect of sucrose esters on a culture model of the nasal barrier. Toxicol in Vitro. 2012;26(3):445–454. doi:10.1016/j.tiv.2012.01.01522274662
  • KissL, WalterFR, BocsikA, et al. Kinetic Analysis of the toxicity of pharmaceutical excipients cremophor EL and RH40 on endothelial and epithelial cells. J Pharm Sci. 2013;102(4):1173–1181. doi:10.1002/jps.2345823362123
  • BocsikA, WalterFR, GyebrovszkiA, et al. Reversible opening of intercellular junctions of intestinal epithelial and brain endothelial cells with tight junction modulator peptides. J Pharm Sci. 2016;105(2):754–765. doi:10.1016/j.xphs.2015.11.01826869428
  • JuretićM, Cetina-ČižmekB, Filipović-GrčićJ, HafnerA, LovrićJ, PepićI. Biopharmaceutical evaluation of surface active ophthalmic excipients using in vitro and ex vivo corneal models. Eur J Pharm Sci. 2018;120:133–141. doi:10.1016/j.ejps.2018.04.03229702232
  • JuretićM, Jurišić DukovskiB, KrtalićI, et al. HCE-T cell-based permeability model: a well-maintained or a highly variable barrier phenotype? Eur J Pharm Sci. 2017;104:23–30. doi:10.1016/j.ejps.2017.03.01828315467
  • RodríguezI, VázquezJA, PastranaL, KhutoryanskiyVV. Enhancement and inhibition effects on the corneal permeability of timolol maleate: polymers, cyclodextrins and chelating agents. Int J Pharm. 2017;529(1–2):168–177. doi:10.1016/j.ijpharm.2017.06.07528652172