169
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Integrated Network Pharmacology Analysis and Pharmacological Evaluation to Explore the Active Components and Mechanism of Abelmoschus manihot (L.) Medik. on Renal Fibrosis

, , , , , & show all
Pages 4053-4067 | Published online: 01 Oct 2020

References

  • MurphyD, McCullochCE, LinF, et al. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med. 2016;165(7):473. doi:10.7326/M16-027327479614
  • HillNR, FatobaST, OkeJL, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765. doi:10.1371/journal.pone.015876527383068
  • ZhouD, LiuY. Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol. 2016;12(2):68–70. doi:10.1038/nrneph.2015.21526714578
  • FleckC, AppenrothD, JonasP, et al. Suitability of 5/6 nephrectomy (5/6NX) for the induction of interstitial renal fibrosis in rats - Influence of sex, strain, and surgical procedure. Exp Toxicol Pathol. 2006;57(3):195–205. doi:10.1016/j.etp.2005.09.00516410187
  • ChenD, FengY, CaoG, ZhaoY. Natural products as a source for antifibrosis therapy. Trends Pharmacol Sci. 2018;39(11):937–952. doi:10.1016/j.tips.2018.09.00230268571
  • GengX, ZhongD, SuL, YangB. Preventive and therapeutic effect of Ganoderma (Lingzhi) on renal diseases and clinical applications. Adv Exp Med Biol. 2019;1182:243–262. doi:10.1007/978-981-32-9421-9_1031777022
  • ZhangL, LiP, XingC, et al. Efficacy and safety of Abelmoschus manihot for primary glomerular disease: a prospective, multicenter randomized controlled clinical trial. Am J Kidney Dis. 2014;64(1):57–65. doi:10.1053/j.ajkd.2014.01.43124631042
  • CarneyEF. Antiproteinuric efficacy of A. manihot superior to losartan. Nat Rev Nephrol. 2014;10(6):300. doi:10.1038/nrneph.2014.63
  • WuW, HuW, HanW, et al. Inhibition of Akt/mTOR/p70S6K signaling activity with Huangkui capsule alleviates the early glomerular pathological changes in diabetic nephropathy. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00443
  • HanW, MaQ, LiuY, et al. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling. Phytomedicine. 2019;57:203–214. doi:10.1016/j.phymed.2018.12.02130785016
  • ZhangR, ZhuX, BaiH, NingK. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol. 2019;10:123. doi:10.3389/fphar.2019.0012330846939
  • LiS, ZhangB. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–120. doi:10.1016/S1875-5364(13)60037-023787177
  • WuR, JiangB, LiH, et al. A network pharmacology approach to discover action mechanisms of Yangxinshi Tablet for improving energy metabolism in chronic ischemic heart failure. J Ethnopharmacol. 2020;246:112227. doi:10.1016/j.jep.2019.11222731509780
  • WeiS, NiuM, WangJ, et al. A network pharmacology approach to discover active compounds and action mechanisms of San-Cao Granule for treatment of liver fibrosis. Drug Des Devel Ther. 2016;10:733–743. doi:10.2147/DDDT.S96964
  • HaoM, JiD, LiL, et al. Mechanism of Curcuma wenyujin rhizoma on acute blood stasis in rats based on a UPLC-Q/TOF-MS metabolomics and network approach. Molecules. 2019;24(1):82. doi:10.3390/molecules24010082
  • XiaKY, ZhangCL, CaoZY, et al. Chemical constituents from Corolla abelmoschi. Strait Pharm J. 2019;31(9):58–61. doi:10.3969/j.issn.1006-3765.2019.09.018
  • XuX, ZhangW, HuangC, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012;13(6):6964–6982. doi:10.3390/ijms1306696422837674
  • MaC, WangL, XieXQ. GPU accelerated chemical similarity calculation for compound library comparison. J Chem Inf Model. 2011;51(7):1521–1527. doi:10.1021/ci100494821692447
  • LiuJ, MuJ, ZhengC, et al. Systems-pharmacology dissection of traditional Chinese medicine compound Saffron formula reveals multi-scale treatment strategy for cardiovascular diseases. Sci Rep-UK. 2016;6(1):19809. doi:10.1038/srep19809
  • XuX, BiJ, PingL, LiP, LiF. A network pharmacology approach to determine the synergetic mechanisms of herb couple for treating rheumatic arthritis. Drug Res Devel Ther. 2018;12:967–979. doi:10.2147/DDDT.S161904
  • MaoZ, ShenS, WanY, et al. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid. J Ethnopharmacol. 2015;173:256–265. doi:10.1016/j.jep.2015.07.03626226437
  • CaiH, SuS, QianD, et al. Renal protective effect and action mechanism of Huangkui capsule and its main five flavonoids. J Ethnopharmacol. 2017;206:152–159. doi:10.1016/j.jep.2017.02.04628408246
  • KimS, ThiessenPA, BoltonEE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–D1213. doi:10.1093/nar/gkv95126400175
  • LiuZ, GuoF, WangY, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci Rep-UK. 2016;6(1). doi:10.1038/srep21146
  • DainaA, MichielinO, ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364. doi:10.1093/nar/gkz38231106366
  • StelzerG, RosenN, PlaschkesI, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1). doi:10.1002/cpbi.5
  • DemchakB, HullT, ReichM, et al. Cytoscape: the network visualization tool for GenomeSpace workflows. F1000Research. 2014;3:151. doi:10.12688/f1000research.4492.225165537
  • JiaoX, ShermanBT, HuangDW, et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics. 2012;28(13):1805–1806. doi:10.1093/bioinformatics/bts25122543366
  • YueS, XinL, FanY, et al. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep-UK. 2017;7(1). doi:10.1038/srep40318
  • NairAB, JacobS. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31. doi:10.4103/0976-0105.17770327057123
  • GuL, WangY, YangG, et al. Ribes diacanthum Pall (RDP) ameliorates UUO-induced renal fibrosis via both canonical and non-canonical TGF-β signaling pathways in mice. J Ethnopharmacol. 2018;231:302–310. doi:10.1016/j.jep.2018.10.02330342194
  • LiuY. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–696. doi:10.1038/nrneph.2011.14922009250
  • KujalP, VernerovZ. 5/6 nephrectomy as an experimental model of chronic renal failure and adaptation to reduced nephron number. Cesk Fysiol. 2008;57(4):104.19526664
  • KrenS, HostetterTH. The course of the remnant kidney model in mice. Kidney Int. 1999;56(1):333–337. doi:10.1046/j.1523-1755.1999.00527.x10411710
  • LeelahavanichkulA, YanQ, HuX, et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 2010;78(11):1136–1153. doi:10.1038/ki.2010.28720736988
  • HaraldssonBR, NystrMJ, DeenWM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88(2):451–487. doi:10.1152/physrev.00055.200618391170
  • DjudjajS, BoorP. Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med. 2019;65:16–36. doi:10.1016/j.mam.2018.06.00229909119
  • WangY, WangYP, TayYC, HarrisDC. Progressive Adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int. 2000;58(4):1797–1804. doi:10.1046/j.1523-1755.2000.00342.x11012915
  • GurleySB, ClareSE, SnowKP, et al. Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006;290(1):F214–22. doi:10.1152/ajprenal.00204.200516118394
  • RenJ, LiJ, LiuX, et al. Quercetin inhibits fibroblast activation and kidney fibrosis involving the suppression of mammalian target of rapamycin and β-catenin Signaling. Sci Rep-UK. 2016;6(1). doi:10.1038/srep23968
  • LuQ, JiX, ZhouY, et al. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial–mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol Res. 2015;99:237–247. doi:10.1016/j.phrs.2015.06.00626151815
  • ChuangS, KuoY, SuM. KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur J Pharmacol. 2015;750:1–7. doi:10.1016/j.ejphar.2015.01.02025620133
  • MiaMM, BankRA. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Cell Tissue Res. 2016;363(3):775–789. doi:10.1007/s00441-015-2285-626453399
  • OgbornMR, NitschmannE, Bankovic-CalicN, et al. Dietary conjugated linoleic acid reduces PGE2 release and interstitial injury in rat polycystic kidney disease. Kidney Int. 2003;64(4):1214–1221. doi:10.1046/j.1523-1755.2003.00215.x12969139
  • WhelanJ, FritscheK. Linoleic Acid. Adv Nutr. 2013;4(3):311–312. doi:10.3945/an.113.00377223674797
  • YangZ, WangH, WangY, et al. Myricetin attenuated diabetes-associated kidney injuries and dysfunction via regulating nuclear factor (erythroid derived 2)-like 2 and nuclear factor-κB Signaling. Front Pharmacol. 2019;10. doi:10.3389/fphar.2019.00647
  • Osmanagic-MyersS, KissA, ManakanatasC, et al. Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. J Clin Invest. 2019;129(2):531–545. doi:10.1172/JCI12129730422822
  • LiW, HeW, XiaP, et al. Total extracts of Abelmoschus manihot L. attenuates Adriamycin-induced renal tubule injury via suppression of ROS-ERK1/2-mediated NLRP3 inflammasome activation. Front Pharmacol. 2019;10:567. doi:10.3389/fphar.2019.0056731191310
  • CantleyLC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–1657. doi:10.1126/science.296.5573.165512040186
  • LanA, DuJ. Potential role of Akt signaling in chronic kidney disease. Nephrol Dial Transpl. 2015;30(3):385–394. doi:10.1093/ndt/gfu196
  • Rodrguez-PeAB, GrandeMT, ElenoNL, et al. Activation of Erk1/2 and Akt following unilateral ureteral obstruction. Kidney Int. 2008;74(2):196–209. doi:10.1038/ki.2008.16018449171
  • DouF, LiuY, LiuL, et al. Aloe-Emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Rejuvenation Res. 2019;22(3):218–229. doi:10.1089/rej.2018.210430215298
  • ZhangX, LiangD, FanJ, et al. Zinc attenuates tubulointerstitial fibrosis in diabetic nephropathy via inhibition of HIF through PI-3K signaling. Biol Trace Elem Res. 2016;173(2):372–383. doi:10.1007/s12011-016-0661-z26956696
  • KangD, JohnsonRJ. Vascular endothelial growth factor: a new player in the pathogenesis of renal fibrosis. Curr Opin Nephrol. 2003;12:43–49. doi:10.1097/01.mnh.0000049814.98789.10
  • GuanX, NieL, HeT, et al. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol. 2014;234(4):560–572. doi:10.1002/path.442025130652
  • Rayego-MateosS, Rodrigues-DiezR, Morgado-PascualJL, et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediat Inflamm. 2018;2018:1–22. doi:10.1155/2018/8739473
  • MatsumotoK, NakamuraT. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001;59(6):2023–2038. doi:10.1046/j.1523-1755.2001.00717.x11380804
  • WangX, ZhouY, TanR, et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal. 2010;299(5):F973–F982. doi:10.1152/ajprenal.00216.2010