403
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Integrated Network Pharmacology Analysis and Experimental Validation to Reveal the Mechanism of Anti-Insulin Resistance Effects of Moringa oleifera Seeds

, , , , ORCID Icon &
Pages 4069-4084 | Published online: 02 Oct 2020

References

  • TaylorR. Insulin resistance and type 2 diabetes. Diabetes. 2012;61(4):778–779. doi:10.2337/db12-007322442298
  • ReavenG. Insulin resistance, hypertension, and coronary heart disease. J Clin Hypertens. 2003;5(4):269–274.
  • GuptaA, GuptaV. Metabolic syndrome: what are the risks for humans? Biosci Trends. 2010;5:204–212.
  • Neuschwander-TetriBA. Non-alcoholic fatty liver disease. BMC Med. 2017;15(1):45.28241825
  • CederbergA, EnerbäckS. Insulin resistance and type 2 diabetes–an adipocentric view. Curr Mol Med. 2003;3(2):107–125.12630558
  • MartinsAR, NachbarRT, GorjaoR, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 2012;11:30.22360800
  • BouzakriK, RoquesM, GualP, et al. Reduced activation of phosphatidylinositol-3 kinase and increased serine phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes. 2003;52(6):1319–1325.12765939
  • ChoiK, KimY. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med. 2010;25(2):119–129.20526383
  • PlomgaardP, BouzakriK, Krogh-MadsenR, MittendorferB, ZierathJR, PedersenBK. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate phosphorylation. Diabetes. 2005;54(10):2939–2945.16186396
  • SteinbergGR, MichellBJ, van DenderenBJ, et al. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 2006;4(6):465–474. doi:10.1016/j.cmet.2006.11.00517141630
  • SaadeldeenFSA, NiuY, WangHL, et al. Natural products: regulating glucose metabolism and improving insulin resistance. Food Sci Hum Wellness. 2020. doi:10.1016/j.fshw.2020.04.005
  • AndoH, TakamuraT, MatsuzawanagataN, et al. The hepatic circadian clock is preserved in a lipid-induced mouse model of non-alcoholic steatohepatitis. Biochem Biophys Res Commun. 2009;380(3):684–688. doi:10.1016/j.bbrc.2009.01.15019285022
  • LebrunP, CognardE, Bellon-PaulR, et al. Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice. Diabetologia. 2009;52(10):2201–2212.19672574
  • YaspelkisBB, KvashaIA, FigueroaTY. High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKalpha/beta phosphorylation and decreases PI-3 kinase activity in muscle. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):1709–1715. doi:10.1152/ajpregu.00117.2009
  • MinaiyanM, AsghariG, TaheriD, SaeidiM, Nasr-EsfahaniS. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats. Avicenna J Phytomed. 2014;4(2):127–136.25050310
  • RandriamboavonjyJI, RioM, PacaudP, LoirandG, TesseA. Moringa oleifera seeds attenuate vascular oxidative and nitrosative stresses in spontaneously hypertensive rats. Oxid Med Cell Longev. 2017;4129459.28713487
  • LunyeraJ, WangD, MaroV, et al. Traditional medicine practices among community members with diabetes mellitus in northern tanzania: an ethnomedical survey. BMC Complement Altern Med. 2016;16(1):282.27514380
  • MuhammadHI, AsmawiMZ, KhanNAK. A review on promising phytochemical, nutritional and glycemic control studies on Moringa oleifera Lam. in tropical and sub-tropical regions. Asian Pac J Trop Biomed. 2016;6(10):896–902.
  • Kumar SainiRK, SivanesanI, KeumYS. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016;6:203.
  • LeoneA, SpadaA, BattezzatiA, et al. Genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015;16:12791–12835.26057747
  • WangF, ZhongHH, ChenWK, et al. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat Prod Res. 2017;31(16):1869–1874.27966373
  • AmagloNK, BennettRN, CurtoRBL, et al. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 2010;122:1047–1054.
  • GiacoppoS, Soundara RajanTS, NicolaGRD, et al. The isothiocyanate isolated from Moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute parkinson’s disease. Rejuvenation Res. 2017;20(1):50–63.27245199
  • BennettRN, MellonFA, FoidlN, et al. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish Tree) and Moringa stenopetala L. J Agric Food Chem. 2003;51:3546–3553.12769522
  • CostaRA, SousaOVD, HoferE, MafezoliJ, BarbosaFG, VieiraRHSDF. Thiocarbamates from Moringa oleifera seeds bioactive against virulent and multidrug-resistant vibrio species. Biomed Res Int. 2017;7963747.28770224
  • GuevaraAP, VargasC, SakuraiH, et al. An antitumor promoter from Moringa oleifera Lam. Mutation Res. 1999;440:181–188.10209341
  • SinghRSG, NegiPS, RadhaC. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J Funct Foods. 2013;5:1883–1891.
  • CheenprachaS, ParkEJ, YoshidaWY, et al. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem. 2010;18:6598–6602.20685125
  • OluduroOA, AderiyeBI, ConnollyJD, AkintayoET, FamurewaO. Characterization and antimicrobial Activity of 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl thiocarboxamide; a novel bioactive compound from Moringa oleifera seed extract. Folia Microbiol. 2010;55(5):422–426.20941575
  • Abdull RazisAF, IbrahimMD, KntayyaSB. Health benefits of Moringa oleifera. Asian Pac J Cancer Prev. 2014;15:8571–8576.25374169
  • MedeirosaMLSD, MourabMCD, NapoleãobTH, et al. Nematicidal activity of a water soluble lectin from seeds of Moringa oleifera. Int J Biol Macromol. 2018;108:782–789.29122715
  • AmeliaD, SantosoB, PurwantoB, et al. Effects of Moringa oleifera on insulin levels and folliculogenesis in polycystic ovary syndrome model with insulin resistance. Immunol Endocr Metab Agents Med Chem. 2018;18:22–31.30369967
  • MetwallyFM, RashadHM, AhmedHH, MahmoudAA, RaoufERA, AbdallaAM. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac J Trop Biomed. 2017;7(3):214–221.
  • LopezM, Rios-SilvaM, HuertaM, et al. Effects of Moringa oleifera leaf powder on metabolic syndrome induced in male wistar rats: a preliminary study. J Int Med Res. 2018;46(8):3327–3336.29962304
  • Sosa-GutiérrezJA, Valdéz-SolanaMA, Forbes-HernándezTY, et al. Effects of Moringa oleifera leaves extract on high glucose-induced metabolic changes in HepG2 cells. Biology. 2018;7(3):37.
  • TuorkeyMJ. Effects of M. oleifera aqueous leaf extract in alloxan induced diabetic mice. Interv Med Appl Sci. 2016;8(3):109–117.28203392
  • SholapurHN, PatilBM. Effect of Moringa oleifera bark extracts on dexamethasone-induced insulin resistance in rats. Drug Res. 2013;63:527–531.
  • HaoDC, XiaoPG. Network pharmacology: a rosetta stone for traditional chinese medicine. Drug Dev Res. 2014;75(5):299–312.25160070
  • HopkinsAL. Network pharmacology. Nat Biotechnol. 2007;25(10):1119–1126.17921997
  • HopkinsAL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–690.18936753
  • TaoW, XuX, WangX, et al. Network pharmacology-based prediction of the active ingredients and potential targets of chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;145:1–10.23142198
  • TangF, TangQ, TianY, FanQ, HuangY. Network pharmacology-based prediction of the active ingredients and potential targets of Mahuang Fuzi Xixin decoction for application to allergic rhinitis. J Ethnopharmacol. 2015;176:402–412.26545458
  • ShiXQ, YueSJ, TangYP, et al. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction. J Ethnopharmacol. 2019;235:227–242.30703496
  • ZhuJ, YiX, ZhangY, PanZ, ZhongL, HuangP. Systems pharmacology-based approach to comparatively study the independent and synergistic mechanisms of Danhong injection and Naoxintong capsule in ischemic stroke treatment. Evid Based Complement Alternat Med. 2019;1056708.30863452
  • Iffiú-SoltészZ, WanecqE, LombaA, et al. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice. Pharmacol Res. 2010;61(4):355–363.20045461
  • WatermanC, Rojas-SilvaP, TumerTB, et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice. Mol Nutr Food Res. 2015;59(6):1013–1024.25620073
  • DainaA, MichielinO, ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–W364.31106366
  • WangX, ShenY, WangS, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45:W356W360.28472422
  • ShawkyE. Prediction of potential cancer-related molecular targets of north african plants constituents using network pharmacology-based analysis. J Ethnopharmacol. 2019;238:111826.30910579
  • ZhaiJ, SongZ, WangY, et al. Zhixiong capsule (ZXC), a traditional chinese patent medicine, prevents atherosclerotic plaque formation in rabbit carotid artery and the related mechanism investigation based on network pharmacology and biological research. Phytomedicine. 2019;59:152776.31004886
  • ChenY, DongJ, LiuJ, et al. Network pharmacology-based investigation of protective mechanism of Aster tataricus on lipopolysaccharide-induced acute lung injury. Int J Mol Sci. 2019;20:543.
  • ZongY, DingM, JiaK, MaS, JuW. Exploring the active compounds of Da-Yuan-Yin in treatment of novel coronavirus (2019-nCoV) pneumonia based on network pharmacology and molecular docking method. Chin Trad Herbal Drugs. 2020;51(4):836–844.
  • InzaghiE, Baldini FerroliB, FintiniD, GrossiA, NobiliV, CianfaraniS. Insulin-like growth factors and metabolic syndrome in obese children. Horm Res Paediatr. 2017;87(6):400–404.28571015
  • Kujawska-LuczakM, SzulinskaM, SkrypnikD, et al. The influence of orlistat, metformin and diet on serum levels of insulin-like growth factor-1 in obeses women with and without insulin resistance. J Physiol Pharmacol. 2018;69(5):737–745.
  • DongL, HouX, LiuF, et al. Regulation of insulin resistance by targeting the insulin‐like growth factor 1 receptor with microRNA-122-5p in hepatic cells. Cell Biol Int. 2019;43(5):553–564.30958584
  • Halperin-SheinfeldM, GertlerA, OkunE, SredniB, CohenHY. The tellurium compound, AS101, increases SIRT1 level and activity and prevents type 2 diabetes. Aging. 2012;4(6):436–447.22761194
  • LinX, TangS, GuiW, et al. Circulating miR-143-3p inhibition protects against insulin resistance in metabolic syndrome via targeting of the insulin-like growth factor 2 receptor. Transl Res. 2019;205:33–43.30392876
  • AhmadF, GoldsteinBJ. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism. 1995;44(9):1175–1184.7666792
  • CzechMP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23(7):804–814.28697184
  • HuangX, LiuG, GuoJ, SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483–1496.30263000
  • BishtB, GoelHL, DeyCS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia. 2007;50(5):1058–1069.17333113
  • BishtB, DeyCS. Focal adhesion kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol. 2008;9:48.18771597
  • SatoH, NagashimaK, OguraM, et al. Src regulates insulin secretion and glucose metabolism by influencing subcellular localization of glucokinase in pancreatic β-cells. J Diabetes Investig. 2016;7(2):171–178.
  • LiuY, ChenXL, WangL, Martins-GreenM. Insulin antagonizes thrombin-induced microvessel leakage. J Vasc Res. 2017;54(3):143–155.28478449
  • LiA, QiuM, ZhouH, WangT, GuoW. PTEN, insulin resistance and cancer. Curr Pharm Des. 2017;23(25):3667–3676.28677502
  • DjiogueS, Nwabo KamdjeAH, VecchioL, et al. Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer. 2013;20(1):R1R17.23207292
  • MatulewiczN, Karczewska-KupczewskaM. Insulin resistance and chronic inflammation. Postepy Hig Med Dosw. 2016;70:1245–1258.
  • CuiLL, WangJM, WangMK, et al. Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. Flowers. Food Sci Hum Wellness. 2020;9:124–129.