1,680
Views
72
CrossRef citations to date
0
Altmetric
Review

Recent Progress in the Development of New Antimalarial Drugs with Novel Targets

Pages 3875-3889 | Published online: 22 Sep 2020

References

  • World Health Organization. World Malaria Report. 2019.
  • MulawT, WubetuM, DessieB, DemekeG, MollaY. Evaluation of antimalarial activity of the 80% methanolic stem bark extract of combretum molle against Plasmodium berghei in mice. J Evid Based Integr Med. 2019;29(24):2515690X19890866.
  • ConroyAL, DattaD, JohnCC. What causes severe malaria and its complications in children? Lessons learned over the past 15 years. BMC Med. 2019;17(1):52. doi:10.1186/s12916-019-1291-z30841892
  • PatelP, BhartiPK, BansalD, et al. Prevalence of mutations linked to antimalarial resistance in Plasmodium falciparum from Chhattisgarh, Central India: a malaria elimination point of view. Sci Rep. 2017;7(1):1–8. doi:10.1038/s41598-017-16866-528127051
  • MenardD, DondorpA. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med. 2017;7(7):a025619. doi:10.1101/cshperspect.a02561928289248
  • MishraM, MishraVK, KashawV, IyerAK, KashawSK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem. 2017;5(125):1300–1320. doi:10.1016/j.ejmech.2016.11.025
  • SahuNK, SahuS, KohliDV. Novel molecular targets for antimalarial drug development. Chem Biol Drug Des. 2008;71(4):287–297. doi:10.1111/j.1747-0285.2008.00640.x18298458
  • DiaganaTT. Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Discov Today. 2015;20(10):1265–1270. doi:10.1016/j.drudis.2015.06.00926103616
  • RosenthalPJ. Antimalarial drug discovery: old and new approaches. J Exp Biol. 2003;206(21):3735–3744. doi:10.1242/jeb.0058914506208
  • CortopassiWA, Celmar Costa FrancaT, KrettliAU. A systems biology approach to antimalarial drug discovery. Expert Opin Drug Discov. 2018;13(7):617–626. doi:10.1080/17460441.2018.147105629737894
  • MathewsES, JohnAR. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Research. 2018;7:1170. doi:10.12688/f1000research.14874.1
  • BurrowsJN, DuparcS, GutteridgeWE, et al. New developments in anti-malarial target candidate and product profiles. Malar J. 2017;16(1):26. doi:10.1186/s12936-016-1675-x28086874
  • BurrowsJN, BurlotE, CampoB, et al. Antimalarial drug discovery–the path towards eradication. Parasitology. 2014;141(1):128–139. doi:10.1017/S003118201300082623863111
  • GachelinG, GarnerP, FerroniE, TröhlerU, ChalmersI. Evaluating cinchona bark and quinine for treating and preventing malaria. J R Soc Med. 2017;110(1):31–40. doi:10.1177/014107681668142128106483
  • ThuAM, PhyoAP, LandierJ, ParkerDM, NostenFH. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J. 2017;284(16):2569–2578. doi:10.1111/febs.1412728580606
  • HokkanenM. Quinine, malarial fevers and mobility: a biography of a ‘European fetish’, c. 1859–c. 1940 In: Medicine, Mobility and the Empire. Manchester University Press; 2017.
  • PinheiroL, FeitosaLM, SilveiraFF, BoechatN. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An Acad Bras Ciênc. 2018;90(1):1251–1271. doi:10.1590/0001-376520182017083029873667
  • SolomonVR, LeeH. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625(1–3):220–233. doi:10.1016/j.ejphar.2009.06.06319836374
  • JohnGK, DouglasNM, Von SeidleinL, et al. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J. 2012;11(1):280. doi:10.1186/1475-2875-11-28022900786
  • ParhizgarAR, TahghighiA. Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci. 2017;42(2):115.28360437
  • KumarS, KumariR, PandeyR. New insight-guided approaches to detect, cure, prevent and eliminate malaria. Protoplasma. 2015;252(3):717–753.25323622
  • GonzálezR, Pons‐DuranC, PiquerasM, AponteJJ, Ter KuileFO, MenéndezC. Mefloquine for preventing malaria in pregnant women. Cochrane Database Syst Rev. 2018;(3). doi:10.1002/14651858.CD011444.pub3.
  • SinghK, KaurT. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. MedChemComm. 2016;7(5):749–768. doi:10.1039/C6MD00084C
  • AntonyHA, ParijaSC. Antimalarial drug resistance: an overview. Trop Parasitol. 2016;6(1):30. doi:10.4103/2229-5070.17508126998432
  • SinghS, SinghA, SinghM, et al. Modern advancement in the area of antimalarial drug development. Indian J Heterocycl Chem. 2018;28(2):185–193.
  • GoodmanCD, BuchananHD, McFaddenGI. Is the mitochondrion a good malaria drug target? Trends Parasitol. 2017;33(3):185–193. doi:10.1016/j.pt.2016.10.00227789127
  • AderibigbeBA. Design of drug delivery systems containing artemisinin and its derivatives. Molecules. 2017;22(2):323. doi:10.3390/molecules22020323
  • LiuCX. Discovery and development of artemisinin and related compounds. Chin Herb Med. 2017;9(2):101–114. doi:10.1016/S1674-6384(17)60084-4
  • BridgfordJL, XieSC, CobboldSA, et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat Commun. 2018;9(1):1–9. doi:10.1038/s41467-018-06221-129317637
  • KrishnaS, PulciniS, MooreCM, StainesHM, StainesHM. Pumped up: reflections on PfATP6 as the target for artemisinins. Trends Pharmacol Sci. 2014;35(1):4–11. doi:10.1016/j.tips.2013.10.00724268763
  • Tayyab AnsariM, Saeed SaifyZ, SultanaN, et al. Malaria and artemisinin derivatives: an updated review. Mini Rev Med Chem. 2013;13(13):1879–1902. doi:10.2174/1389557511313666009724070206
  • GaillardT, MadametM, TsombengFF, DormoiJ, PradinesB. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malar J. 2016;15(1):556.27846898
  • OgbonnaA, UnekeCJ. Artemisinin-based combination therapy for uncomplicated malaria in Sub-Saharan Africa: the efficacy, safety, resistance and policy implementation since Abuja 2000. Trans R Soc Trop Med Hyg. 2008;102(7):621–627. doi:10.1016/j.trstmh.2008.03.02418499204
  • CharunwatthanaP, PukrittayakameeS. Combination anti-malarial therapy and WHO recommendations. J R Inst Thai. 2010;100–106.
  • TooveyS, NieforthK, SmithP, et al. Comparative benefit of malaria chemoprophylaxis modelled in United Kingdom travellers. Travel Med Infect Dis. 2014;12(6):726–732. doi:10.1016/j.tmaid.2014.08.00525443997
  • Owusu-BoatengI, AntoF. Intermittent preventive treatment of malaria in pregnancy: a cross-sectional survey to assess uptake of the new sulfadoxine–pyrimethamine five dose policy in Ghana. Malar J. 2017;16(1):323. doi:10.1186/s12936-017-1969-728797296
  • AlKadiHO. Antimalarial drug toxicity: a review. Chemotherapy. 2007;53(6):385–391. doi:10.1159/00010976717934257
  • OyeladeJ, IsewonI, AromolaranO, et al. Computational identification of metabolic pathways of Plasmodium falciparum using the-shortest path algorithm. Int J Genomics. 2019;2019.
  • FidockDA, RosenthalPJ, CroftSL, BrunR, NwakaS. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3(6):509–520. doi:10.1038/nrd141615173840
  • ComerE, BeaudoinJA, KatoN, et al. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents. J Med Chem. 2014;57(20):8496–8502. doi:10.1021/jm500994n25211597
  • AideP, CandrinhoB, GalatasB, et al. Setting the scene and generating evidence for malaria elimination in Southern Mozambique. Malar J. 2019;18(1):190. doi:10.1186/s12936-019-2832-931170984
  • DeuE. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J. 2017;284(16):2604–2628. doi:10.1111/febs.1413028599096
  • TeixeiraC, GomesRB, GomesP. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011;18(10):1555–1572.21428877
  • RoyKK. Targeting the active sites of malarial proteases for antimalarial drug discovery: approaches, progress and challenges. Int J Antimicrob Agents. 2017;50(3):287–302. doi:10.1016/j.ijantimicag.2017.04.00628668681
  • VermaS, DixitR, PandeyKC. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Front Pharmacol. 2016;25(7):107.
  • RosenthalPJ. Proteases of malaria parasites: new targets for chemotherapy. Emerg Infect Dis. 1998;4(1):49. doi:10.3201/eid0401.9801079452398
  • RajR, KumarV. Anti-malarial drug discovery: new enzyme inhibitors. Nat Prod Targeting Clin Relevant Enzyme. 2017;2:277–296.
  • GlushakovaS, MazarJ, Hohmann‐MarriottMF, HamaE, ZimmerbergJ. Irreversible effect of cysteine protease inhibitors on the release of malaria parasites from infected erythrocytes. Cell Microbiol. 2009;11(1):95–105. doi:10.1111/j.1462-5822.2008.01242.x19016793
  • IstvanES, MallariJP, CoreyVC, et al. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun. 2017;8(1):1–8. doi:10.1038/ncomms1424028232747
  • NaBK, ShenaiBR, SijwaliPS, et al. Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem J. 2004;378(2):529–538. doi:10.1042/bj2003148714629194
  • NigussieD, BeyeneT, ShahNA, BelewS. New targets in malaria parasite chemotherapy: a review. Malaria Contr Elimination. 2015;1:S1–007.
  • MavondoGA, MkhwananziBN, MabandlaMV. Pre-infection administration of asiatic acid retards parasitaemia induction in Plasmodium berghei murine malaria infected sprague-dawley rats. Malar J. 2016;15(1):226. doi:10.1186/s12936-016-1278-627098750
  • KandepeduN, Gonzàlez CabreraD, EedubilliS, et al. Identification, characterization, and optimization of 2, 8-disubstituted-1, 5-naphthyridines as novel Plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria. J Med Chem. 2018;61(13):5692–5703. doi:10.1021/acs.jmedchem.8b0064829889526
  • McNamaraCW, LeeMC, LimCS, et al. Targeting Plasmodium PI (4) K to eliminate malaria. Nature. 2013;504(7479):248–253. doi:10.1038/nature1278224284631
  • BlascodDL, WittydMJ, DoninidC, et al. UCT943, A Next Generation Plasmodium Falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria 2. 2018.
  • BhagavathulaAS, ElnourAA, ShehabA. Alternatives to currently used antimalarial drugs: in search of a magic bullet. Infect Dis Poverty. 2016;5(1):103. doi:10.1186/s40249-016-0196-827809883
  • KrishnaS, Eckstein-LudwigU, JoëtT, et al. Transport processes in Plasmodium falciparum-infected erythrocytes: potential as new drug targets. Int J Parasitol. 2002;32(13):1567–1573. doi:10.1016/S0020-7519(02)00185-612435441
  • DesaiSA. Targeting ion channels of Plasmodium falciparum-infected human erythrocytes for antimalarial development. Curr Drug Targets Infect Disord. 2004;4(1):79–86. doi:10.2174/156800504348093415032636
  • HaldarK, SamuelBU, MohandasN, HarrisonT, HillerNL. Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network. Int J Parasitol. 2001;31(12):1393–1401. doi:10.1016/S0020-7519(01)00251-X11566306
  • NguitragoolW, BokhariAA, PillaiAD, et al. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell. 2011;145(5):665–677. doi:10.1016/j.cell.2011.05.00221620134
  • LiskG, KangM, CohnJV, DesaiSA. Specific inhibition of the plasmodial surface anion channel by dantrolene. Eukaryot Cell. 2006;5(11):1882–1893.16950925
  • TilleyL, DixonMW, TheKK. Plasmodium falciparum-infected red blood cell. Int J Biochem Cell Biol. 2011;43(6):839–842. doi:10.1016/j.biocel.2011.03.01221458590
  • DickermanBK, ElsworthB, CobboldSA, et al. Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci Rep. 2016;22(6):37502. doi:10.1038/srep37502
  • HeitmeierMR, HreskoRC, EdwardsRL, et al. Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein engineering. PLoS One. 2019;14(5):e0216457. doi:10.1371/journal.pone.021645731071153
  • MeirelesP, Sales‐DiasJ, AndradeCM, et al. GLUT1–mediated glucose uptake plays a crucial role during Plasmodium hepatic infection. Cell Microbiol. 2017;19(2):e12646. doi:10.1111/cmi.12646
  • MarchettiRV, LehaneAM, ShafikSH, WinterbergM, MartinRE, KirkK. A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. Nat Commun. 2015;6(1):1–7. doi:10.1038/ncomms7721
  • RoslingJE, RidgwayMC, SummersRL, LehaneAM. Biochemical characterization and chemical inhibition of PfATP4-associated Na+-ATPase activity in Plasmodium falciparum membranes. J Biol Chem. 2018;293(34):13327–13337. doi:10.1074/jbc.RA118.00364029986883
  • CrawfordED, QuanJ, HorstJA, EbertD, WuW, DeRisiJL. Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733. PLoS One. 2017;12(5):e0178163. doi:10.1371/journal.pone.017816328542423
  • ZhangR, SuwanaruskR, MalleretB, et al. A basis for rapid clearance of circulating ring-stage malaria parasites by the spiroindolone KAE609. J Infect Dis. 2016;213(1):100–104. doi:10.1093/infdis/jiv35826136472
  • YadavBS, ChaturvediN, MarinaN. Recent advances in system based study for anti-malarial drug development process. Curr Pharm Des. 2019;25(31):3367–3377. doi:10.2174/138161282566619090216210531475893
  • AshleyEA, PhyoAP. Drugs in development for malaria. Drugs. 2018;78(9):861–879.29802605
  • BietzS, MontillaI, KülzerS, PrzyborskiJM, LingelbachK. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte. Mol Biochem Parasitol. 2009;167(1):48–53. doi:10.1016/j.molbiopara.2009.04.00619393693
  • PosfaiD, SylvesterK, ReddyA, et al. Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection. PLoS Pathog. 2018;14(5):e1007057. doi:10.1371/journal.ppat.100705729775485
  • Penarete-VargasDM, BoissonA, UrbachS, et al. A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry. PLoS One. 2014;9(12):12. doi:10.1371/journal.pone.0113918
  • Schiafino-OrtegaS, BaglioniE, Pérez-MorenoG, et al. 1, 2-Diphenoxiethane salts as potent antiplasmodial agents. Bioorg Med Chem Lett. 2018;28(14):2485–2489. doi:10.1016/j.bmcl.2018.05.06029880399
  • WeinS, Van BaCT, MaynadierM, et al. New insight into the mechanism of accumulation and intraerythrocytic compartmentation of albitiazolium, a new type of antimalarial. Antimicrob Agents Chemother. 2014;58(9):5519–5527. doi:10.1128/AAC.00040-1425001307
  • DéchampsS, WengelnikK, Berry-SterkersL, CerdanR, VialHJ, Gannoun-ZakiL. The kennedy phospholipid biosynthesis pathways are refractory to genetic disruption in Plasmodium berghei and therefore appear essential in blood stages. Mol Biochem Parasitol. 2010;173(2):69–80. doi:10.1016/j.molbiopara.2010.05.00620478340
  • PeyrottesS, CaldarelliS, WeinS, PerigaudC, PelletA, VialH. Choline analogues in malaria chemotherapy. Curr Pharm Des. 2012;18(24):3454–3466.22607139
  • Mesa-VanegasAM. Potential antiplasmodial and antimalarial agents of natural and synthetic origin. Rev Colomb Cienc Quim Farm. 2018;47(3):375–399. doi:10.15446/rcciquifa.v47n3.77371
  • XuM, ZhuJ, DiaoY, et al. Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: discovery and optimization of dihydrothiophenone derivatives. J Med Chem. 2013;56(20):7911–7924. doi:10.1021/jm400938g24073986
  • Llanos-CuentasA, CasapiaM, ChuquiyauriR, et al. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect Dis. 2018;18(8):874–883. doi:10.1016/S1473-3099(18)30309-829909069
  • ReisRA, CalilFA, FelicianoPR, PinheiroMP, NonatoMC. The dihydroorotate dehydrogenases: past and present. Arch Biochem Biophys. 2017;15(632):175–191. doi:10.1016/j.abb.2017.06.019
  • BeleteTM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbiome J. 2019;11(1):1–13. doi:10.1016/j.humic.2019.01.001
  • GobleJL, AdendorffMR, de BeerTA, StephensLL, BlatchGL. The malarial drug target Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductoisomerase (PfDXR): development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening (supplementary information). Protein Pept Lett. 2010;17(1):109–120. doi:10.2174/09298661078990954820214634
  • GisselbergJE, HerreraZ, OrchardLM, LlinásM, YehE. Specific inhibition of the bifunctional farnesyl/geranylgeranyl diphosphate synthase in malaria parasites via a new small-molecule binding site. Cell Chem Biol. 2018;25(2):185–193. doi:10.1016/j.chembiol.2017.11.01029276048
  • GrellierP, DepoixD, SchrévelJ, FlorentI. Discovery of New Targets for Antimalarial Chemotherapy. 2008:219–225.
  • EastmanRT, WhiteJ, HuckeO, et al. Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase. Mol Biochem Parasitol. 2007;152(1):66–71. doi:10.1016/j.molbiopara.2006.11.01217208314
  • SheridanCM, GarciaVE, AhyongV, DeRisiJL. The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malar J. 2018;17(1):465. doi:10.1186/s12936-018-2616-730541569
  • JacksonKE, HabibS, FrugierM, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011;27(10):467–476. doi:10.1016/j.pt.2011.05.00521741312
  • RottmannM, JonatB, GumppC, et al. Preclinical antimalarial combination Study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob Agents Chemother. 2020;64(4). doi:10.1128/AAC.02181-19
  • ArmisteadJS, WilsonIB, Van KuppeveltTH, DinglasanRR. A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands. Biochem J. 2011;438(3):475–83107. doi:10.1042/BJ2011069421663594
  • BatchvarovaM, ShanS, ZennadiR, et al. Sevuparin Reduces Adhesion of Both Sickle Red Cells and Leukocytes to Endothelial Cells in vitro and Inhibits Vaso-Occlusion in vivo. 2013:182.
  • VogtAM, BarraganA, ChenQ, KirondeF, SpillmannD, WahlgrenM. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum–infected erythrocytes via the DBL1α domain of PfEMP1. J Am Soc Hematol. 2003;101(6):2405–2411.
  • OgetoT, NdubiF, MurithiM, et al. Malaria vaccines targeting the pre-erythrocytic stage: a scoping review. F1000Research. 2020;9(680):680. doi:10.12688/f1000research.24320.1
  • EwerKJ, Sierra-DavidsonK, SalmanAM, et al. Progress with viral vectored malaria vaccines: a multi-stage approach involving “unnatural immunity”. Vaccine. 2015;33(52):7444–7451. doi:10.1016/j.vaccine.2015.09.09426476366
  • ShanksGD. Historical review: problematic malaria prophylaxis with quinine. Am J Trop Med Hyg. 2016;95(2):269–272. doi:10.4269/ajtmh.16-013827185766
  • LacavaAC. Ocular complications of chloroquine and derivatives therapy. Arq Bras Oftalmol. 2010;73(4):384–389. doi:10.1590/S0004-2749201000040001920944948
  • NiuYR, WeiB, ChenB, et al. Amodiaquine‐induced reproductive toxicity in adult male rats. Mol Reprod Dev. 2016;83(2):174–182. doi:10.1002/mrd.2260326647924
  • DavisTM, HungTY, SimK, KarunajeewaHA, IlettKF. Piperaquine. Drugs. 2005;65(1):75–87. doi:10.2165/00003495-200565010-00004
  • LuKY, DerbyshireER. Tafenoquine: a step toward malaria elimination. Biochemistry. 2020;59(8):911–920. doi:10.1021/acs.biochem.9b0110532073254
  • GonzálezR, HellgrenU, GreenwoodB, MenéndezC. Mefloquine safety and tolerability in pregnancy: a systematic literature review. Malar J. 2014;13(1):75. doi:10.1186/1475-2875-13-7524581338
  • BouchaudO, ImbertP, TouzeJE, DodooAN, DanisM, LegrosF. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar J. 2009;8(1):289. doi:10.1186/1475-2875-8-28920003315
  • CroftSL, DuparcS, Arbe-BarnesSJ, et al. Review of pyronaridine anti-malarial properties and product characteristics. Malar J. 2012;11(1):270. doi:10.1186/1475-2875-11-27022877082
  • MeshnickSR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32(13):1655–1660. doi:10.1016/S0020-7519(02)00194-712435450
  • NixonGL, MossDM, ShoneAE, et al. Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother. 2013;68(5):977–985. doi:10.1093/jac/dks50423292347
  • NzilaA. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother. 2006;57(6):1043–1054. doi:10.1093/jac/dkl10416617066
  • GaillardT, MadametM, PradinesB. Tetracyclines in malaria. Malar J. 2015;14(1):445.26555664
  • GaillardT, DormoiJ, MadametM, PradinesB. Macrolides and associated antibiotics based on similar mechanism of action like lincosamides in malaria. Malar J. 2016;15(1):85. doi:10.1186/s12936-016-1114-z26873741