91
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Dexmedetomidine Attenuates Cellular Injury and Apoptosis in H9c2 Cardiomyocytes by Regulating p-38MAPK and Endoplasmic Reticulum Stress

ORCID Icon, , , &
Pages 4231-4243 | Published online: 12 Oct 2020

References

  • BunteS, BehmenburgF, MajewskiN, et al. Characteristics of dexmedetomidine postconditioning in the field of myocardial ischemia-reperfusion injury. Anesth Analg. 2020;130(1):90–98. doi:10.1213/ANE.000000000000441731633505
  • LiL, LiX, ZhangZ, et al. Protective mechanism and clinical application of hydrogen in myocardial ischemia-reperfusion injury. Pak J Biol Sci. 2020;23(2):103–112.31944068
  • XiJ, LiQ, LiB, et al. miR‑155 inhibition represents a potential valuable regulator in mitigating myocardial hypoxia/reoxygenation injury through targeting BAG5 and MAPK/JNK signaling. Mol Med Rep. 2020;21(3):1011–1020.31922242
  • LiJ, ZhouW, ChenW, et al. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning. Mol Med Rep. 2020;21(3):1527–1536.32016463
  • Kitazume-TaneikeR, TaneikeM, OmiyaS, et al. Ablation of toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochem Biophys Res Commun. 2019;515(3):442–447. doi:10.1016/j.bbrc.2019.05.15031160091
  • LiJ, ZhaoY, ZhouN, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in diabetes mellitus by inhibiting endoplasmic reticulum stress. J Diabetes Res. 2019;30::7869318.
  • HeuschG, GershBJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 2017;11:774–784.
  • HeuschG. Cardioprotection research must leave its comfort zone. Eur Heart J. 2018;39(36):3393–3395. doi:10.1093/eurheartj/ehy25329722801
  • HeuschG. Critical issues for the translation of cardioprotection. Circ Res. 2017;120(9):1477–1486. doi:10.1161/CIRCRESAHA.117.31082028450365
  • DavidsonSM, FerdinandyP, AndreadouI, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC Review Topic Of The Week. J Am Coll Cardiol. 2019;73(1):89–99. doi:10.1016/j.jacc.2018.09.08630621955
  • KongQ, WuX, QiuZ, et al. Protective effect of dexmedetomidine on acute lung injury via the upregulation of tumour necrosis factor-α-induced protein-8-like 2 in septic mice. Inflammation. 2020;11:1–14.
  • ZhangY, LiuM, YangY, et al. Dexmedetomidine exerts a protective effect on ischemia-reperfusion injury after hepatectomy: a prospective, randomized, controlled study. J Clin Anesth. 2020;61:109631. doi:10.1016/j.jclinane.2019.10963131669050
  • XiongJ, QuanJ, QinC, et al. Dexmedetomidine exerts brain-protective effects under cardiopulmonary bypass through inhibiting the janus kinase 2/signal transducers and activators of transcription 3 pathway. J Interferon Cytokine Res. 2020;40(2):116–124.31834821
  • GongJ, ZhangR, ShenL, et al. The brain protective effect of dexmedetomidine during surgery for paediatric patients with congenital heart disease. J Int Med Res. 2019;47(4):1677–1684. doi:10.1177/030006051882127230966831
  • OhJE, JunJH, HwangHJ, et al. Dexmedetomidine restores autophagy and cardiac dysfunction in rats with streptozotocin-induced diabetes mellitus. Acta Diabetol. 2019;1:105–114.
  • HeL, HaoS, WangY, et al. Dexmedetomidine preconditioning attenuates ischemia/reperfusion injury in isolated rat hearts with endothelial dysfunction. Biomed Pharmacother. 2019;114:108837. doi:10.1016/j.biopha.2019.10883730965239
  • RiquelmeJA, WestermeierF, HallAR, et al. Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacol Res. 2016;103:318–327. doi:10.1016/j.phrs.2015.11.00426607864
  • LiuY, WangS, WangZ, et al. Dexmedetomidine alleviated endoplasmic reticulum stress via inducing ER-phagy in the spinal cord of neuropathic pain model. Front Neurosci. 2020;14(14):90. doi:10.3389/fnins.2020.0009032184704
  • ChaiY, ZhuK, LiC, et al. Dexmedetomidine alleviates cisplatin‑induced acute kidney injury by attenuating endoplasmic reticulum stress‑induced apoptosis via the α2AR/PI3K/AKT pathway. Mol Med Rep. 2020;21(3):1597–1605.32016445
  • SunD, WangJ, LiuX, et al. Dexmedetomidine attenuates endoplasmic reticulum stress-induced apoptosis and improves neuronal function after traumatic brain injury in mice. Brain Res. 2020;1732(1732):146682. doi:10.1016/j.brainres.2020.14668231991122
  • ZhaoL, ZhaiM, YangX, et al. Dexmedetomidine attenuates neuronal injury after spinal cord ischaemia-reperfusion injury by targeting the CNPY2-endoplasmic reticulum stress signalling. J Cell Mol Med. 2019;23(12):8173–8183. doi:10.1111/jcmm.1468831625681
  • LiuC, FuQ, MuR, et al. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res. 2018;1701(1701):246–254. doi:10.1016/j.brainres.2018.09.00730201260
  • WangZ, YangY, XiongW, et al. Dexmedetomidine protects H9C2 against hypoxia/reoxygenation injury through miR-208b-3p/Med13/Wnt signaling pathway axis. Biomed Pharmacother. 2020;125:110001. doi:10.1016/j.biopha.2020.11000132070878
  • YuanM, MengXW, MaJ, et al. Dexmedetomidine protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced intracellular calcium overload and apoptosis through regulating FKBP12.6/RyR2 signaling. Drug Des Devel Ther. 2019;2(13):3137–3149. doi:10.2147/DDDT.S219533
  • ShaoY, ChenX, LiuY, et al. Dexmedetomidine alleviates lung injury in sepsis mice through regulating P38 MAPK signaling pathway. Panminerva Med. 2020.
  • LiuX, ChenQH, HuQ, et al. Dexmedetomidine protects intestinal ischemia-reperfusion injury via inhibiting p38 MAPK cascades. Exp Mol Pathol. 2020;23(115):104444. doi:10.1016/j.yexmp.2020.104444
  • QiuZ, LuP, WangK, et al. Dexmedetomidine inhibits neuroinflammation by altering microglial M1/M2 polarization through MAPK/ERK pathway. Neurochem Res. 2019;45(2):345–353. doi:10.1007/s11064-019-02922-131823113
  • WangK, ZhuY. Dexmedetomidine protects against oxygen-glucose deprivation/reoxygenation injury-induced apoptosis via the p38 MAPK/ERK signalling pathway. J Int Med Res. 2018;46(2):675–686. doi:10.1177/030006051773446029210287
  • ZhangJ, XiaF, ZhaoH, et al. Dexmedetomidine-induced cardioprotection is mediated by inhibition of high mobility group box-1 and the cholinergic anti-inflammatory pathway in myocardial ischemia-reperfusion injury. PLoS One. 2019;7:e0218726. doi:10.1371/journal.pone.0218726
  • ZhangY, MonomericHC. C-reactive protein affects cell injury and apoptosis through activation of p38 MAPK in human coronary artery endothelial cells. Bosn J Basic Med Sci. 2020;30.
  • LiX, ZhangZ, LiangW, et al. Data on Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation in vitro. Data Brief. 2020;19(28):105023. doi:10.1016/j.dib.2019.105023
  • Martinez-LimonA, JoaquinM, CaballeroM, et al. The p38 pathway: from biology to cancer therapy. Int J Mol Sci. 2020;21(6):1913. doi:10.3390/ijms21061913
  • ZhaoJ, CaoJ, YuL, et al. Dehydroepiandrosterone resisted E. Coli O157: H7-induced inflammation via blocking the activation of p38 MAPK and NF-κB pathways in mice. Cytokine. 2020;127:154955. doi:10.1016/j.cyto.2019.15495531864092
  • WangR, YangM, WangM, et al. Total saponins of aralia elata (Miq) seem alleviate calcium homeostasis imbalance and endoplasmic reticulum stress-related apoptosis induced by myocardial ischemia/reperfusion injury. Cell Physiol Biochem. 2018;1:28–40. doi:10.1159/000493954
  • BiX, ZhangG, WangX, et al. Endoplasmic reticulum chaperone GRP78 protects heart from ischemia/reperfusion injury through Akt activation. Circ Res. 2018;11:1545–1554. doi:10.1161/CIRCRESAHA.117.312641
  • LiH, ChenH, LiR, et al. Cucurbitacin I induces cancer cell death through the endoplasmic reticulum stress pathway. J Cell Biochem. 2018;11.
  • HuangZH, ZhangSX, WangC, et al. Downregulated long non-coding RNA FOXD3-AS1 promotes endoplasmic reticulum stress-induced apoptosis by inhibiting RCN1 via let-7e-5p in nasopharyngeal carcinoma. American journal of physiology. Cell Physiol. 2020.
  • ChenJ, ChenJ, ChengY, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther. 2020;1:97. doi:10.1186/s13287-020-01610-0
  • LiuXR, LiT, CaoL, et al. Dexmedetomidine attenuates H2O2-induced neonatal rat cardiomyocytes apoptosis through mitochondria- and ER-medicated oxidative stress pathways. Mol Med Rep. 2018;5:7258–7264.
  • KimSH, JunJH, OhJE, et al. Renoprotective effects of dexmedetomidine against ischemia-reperfusion injury in streptozotocin-induced diabetic rats. PLoS One. 2018;8:e0198307. doi:10.1371/journal.pone.0198307
  • GaoJM, MengXW, ZhangJ, et al. Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury by suppressing TLR4-MyD88-NF- κ B signaling. Biomed Res Int. 2017;1674613.
  • ChaudhariAA, SeolJ-W, LeeY-J, et al. Hypoxia protects articular chondrocytes from thapsigargin-induced apoptosis. Biochem Biophys Res Commun. 2009;381(4):513–517. doi:10.1016/j.bbrc.2009.02.07319233125
  • PriceBD, Mannheim-RodmanLA, BrefeldinSKC. A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol. 1992;152(3):545–552. doi:10.1002/jcp.10415203141506413
  • KyriakisJM, AvruchJ. Mammalian mapk signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92:689–737. doi:10.1152/physrev.00028.201122535895
  • YanBC, AdachiT, TsubataT. ER stress is involved in B cell antigen receptor ligation-induced apoptosis. Biochem Biophys Res Commun. 2008;365(1):143–148. doi:10.1016/j.bbrc.2007.10.13717976372
  • RasheedZ, HaqqiTM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human chondrocytes. Biochim Biophys Acta. 2012;12:2179–2189. doi:10.1016/j.bbamcr.2012.08.021
  • LiYX, RenYL, FuHJ, et al. Hepatitis B virus middle protein enhances IL-6 production via p38 MAPK/NF-κB pathways in an ER stress-dependent manner. PLoS One. 2016;7:e0159089. doi:10.1371/journal.pone.0159089
  • LiL, ZhangJ, ZhangQ, et al. High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/autophagy pathway. Front Physiol. 2019;28(10):24. doi:10.3389/fphys.2019.00024
  • NingJ, ZhaoC, ChenJX, et al. Oleate inhibits hepatic autophagy through p38 mitogen-activated protein kinase (MAPK). Biochem Biophys Res Commun. 2019;18(514):92–97. doi:10.1016/j.bbrc.2019.04.073
  • QianZ, ChangJ, JiangF, et al. Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the P38-MAPK signaling pathway. Brain Behav Immun. 2020;31:S0889–S1591.
  • KumphuneS, SurinkaewS, ChattipakornSC, et al. Inhibition of p38 MAPK activation protects cardiac mitochondria from ischemia/reperfusion injury. Pharm Biol. 2015;53(12):1831–1841. doi:10.3109/13880209.2015.101456925880145
  • BonneyEA. Mapping out p38MAPK. Am J Reprod Immunol. 2017;77(5):e12652. doi:10.1111/aji.12652