91
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Cerebral Oxygen Changes in Neonates During Immediate Transition After Birth and Early Life: An Observational Study

, , , , , ORCID Icon, & show all
Pages 4703-4715 | Published online: 02 Nov 2020

References

  • PichlerG, SchmölzerGM, UrlesbergerB. Cerebral tissue oxygenation during immediate neonatal transition and resuscitation. Front Pediatr. 2017;5:29. doi:10.3389/fped.2017.0002928280719
  • KurinczukJJ, White-KoningM, BadawiN. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev. 2010;86(6):329–338.20554402
  • ZhaoP, JiG, XueH, et al. Isoflurane postconditioning improved long-term neurological outcome possibly via inhibiting the mitochondrial permeability transition pore in neonatal rats after brain hypoxia-ischemia. Neuroscience. 2014;280:193–203. doi:10.1016/j.neuroscience.2014.09.00625241064
  • YeeM, BuczynskiBW, O’ReillyMA. Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. Am J Respir Cell Mol Biol. 2014;50(4):757–766. doi:10.1165/rcmb.2013-0207OC24188066
  • VolpeJJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–124.19081519
  • PichlerG, UrlesbergerB, BaikN, et al. Cerebral oxygen saturation to guide oxygen delivery in preterm neonates for the immediate transition after birth: a 2-center randomized controlled pilot feasibility trial. J Pediatr. 2016;170(1):73–8.e1-73-8.e4. doi:10.1016/j.jpeds.2015.11.053
  • PellicerA, Bravo MdelC. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 2011;16(1):42–49. doi:10.1016/j.siny.2010.05.00320580625
  • FauchereJC, SchulzG, HaensseD, et al. Nearinfrared spectroscopy measurements of cerebral oxygenation in newborns during immediate postnatal adaptation. J Pediatr. 2010;156:372–376. doi:10.1016/j.jpeds.2009.09.05019914638
  • FuchsH, LindnerW, BuschkoA, AlmazamM, HummlerHD, SchmidMB. Brain oxygenation monitoring during neonatal resuscitation of very low birth weight infants. J Perinatol. 2012;32:356–362. doi:10.1038/jp.2011.11021852771
  • IsobeK, KusakaT, FujikawaY, et al. Measurement of cerebral oxygenation in neonates after vaginal delivery and cesarean section using full-spectrum near infrared spectroscopy. Comp Biochem Physiol Part a Mol Integr Physiol. 2002;132:133–138. doi:10.1016/S1095-6433(01)00539-6
  • PichlerG, BinderC, AvianA, BeckenbachE, SchmölzerGM, UrlesbergerB. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr. 2013;163(6):1558–1563. doi:10.1016/j.jpeds.2013.07.00723972642
  • BaikN, UrlesbergerB, SchwabergerB, et al. Reference ranges for cerebral tissue oxygen saturation index in term neonates during immediate neonatal transition after birth. Neonatology. 2015;108(4):283–286. doi:10.1159/00043845026330229
  • WillfurthI, Baik-SchneditzN, SchwabergerB, et al. Cerebral oxygenation in neonates immediately after cesarean section and mode of maternal anesthesia. Neonatology. 2019;116(2):132–139. doi:10.1159/00049904631096224
  • Jennen-SteinmetzC, WellekS. A new approach to sample size calculation for reference interval studies. Stat Med. 2005;24(20):3199–3212. doi:10.1002/sim.217716189809
  • MortonSU, BrodskyD. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016;43(3):395–407.27524443
  • UrlesbergerB, GrossauerK, PocivalnikM, AvianA, MüllerW, PichlerG. Regional oxygen saturation of the brain and peripheral tissue during birth transition of term infants. J Pediatr. 2010;157(5):740–744. doi:10.1016/j.jpeds.2010.05.01320955848
  • YıldızEP, EkiciB, TatlıB. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother. 2017;17(5):449–459. doi:10.1080/14737175.2017.125956727830959
  • Torres-CuevasI, Parra-LlorcaA, Sánchez-IllanaA, et al. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017;12:674–681. doi:10.1016/j.redox.2017.03.01128395175
  • MortonSU, BrodskyD. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016;43(3):395–407.27524443
  • CrossleyKJ, AllisonBJ, PolglaseGR, MorleyCJ, DavisPG, HooperSB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol. 2009;587(Pt 19):4695–4704. doi:10.1113/jphysiol.2009.17487019675069
  • UrlesbergerB, BrandnerA, PocivalnikM, KoestenbergerM, MorrisN, PichlerG. A left-to-right shunt via the ductus arteriosus is associated with increased regional cerebral oxygen saturation during neonatal transition. Neonatology. 2013;103(4):259–263. doi:10.1159/00034638423446114
  • BaenzigerO, StolkinF, KeelM, et al. The influence of the timing of cord clamping on postnatal cerebral oxygenation in preterm neonates: a randomized, controlled trial. Pediatrics. 2007;119(3):455–459. doi:10.1542/peds.2006-272517332197
  • PolglaseGR, BlankDA, BartonSK, et al. Physiologically based cord clamping stabilises cardiac output and reduces cerebrovascular injury in asphyxiated near-term lambs. Arch Dis Child Fetal Neonatal Ed. 2018;103;6:530–538.
  • RabeH, GyteGM, Díaz-RosselloJL, DuleyL. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev. 2019;9(9):CD003248.31529790
  • SchwabergerB, PichlerG, Binder-HeschlC, BaikN, AvianA, UrlesbergerB. Transitional changes in cerebral blood volume at birth. Neonatology. 2015;108(4):253–258. doi:10.1159/00043734726338713
  • CnattingiusS, LindamA, PerssonM. Risks of asphyxia-related neonatal complications in offspring of mothers with type 1 or type 2 diabetes: the impact of maternal overweight and obesity. Diabetologia. 2017;60(7):1244–1251. doi:10.1007/s00125-017-4279-228409211
  • PhilippsAF, WidnessJA, GarciaJF, RayeJR, SchwartzR. Erythropoietin elevation in the chronically hyperglycemic fetal lamb. Proc Soc Exp Biol Med. 1982;170(1):42–47. doi:10.3181/00379727-170-413947043470
  • TeramoKA, WidnessJA. Increased fetal plasma and amniotic fluid erythropoietin concentrations: markers of intrauterine hypoxia. Neonatology. 2009;95(2):105–116. doi:10.1159/00015309418776724
  • MatterbergerC, Baik-SchneditzN, SchwabergerB, et al. Blood glucose and cerebral tissue oxygenation immediately after birth – an observational study. J Pediatr. 2018;200:19–23. doi:10.1016/j.jpeds.2018.05.00829958674
  • ThewissenL, PistoriusL, BaertsW, NaulaersG, Van BelF, LemmersP. Neonatal haemodynamic effects following foetal exposure to labetalol in hypertensive disorders of pregnancy. J Matern Fetal Neonatal Med. 2017;30(13):1533–1538. doi:10.1080/14767058.2016.119314527294851
  • HouX, DingH, TengY, ZhouC, ZhangD. NIRS study of cerebral oxygenation and hemodynamics in neonate at birth. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1229–1232.
  • Baik-SchneditzN, PichlerG, SchwabergerB, et al. Effect of intrauterine growth restriction on cerebral regional oxygen saturation in preterm and term neonates during immediate postnatal transition. Neonatology. 2020;9(6):1–7. doi:10.1159/000507583
  • MicheletD, ArslanO, HillyJ, et al. Intraoperative changes in blood pressure associated with cerebral desaturation in infants. Paediatr Anaesth. 2015;25(7):681–688. doi:10.1111/pan.1267125929346
  • OlbrechtVA, SkownoJ, MarchesiniV, et al. An, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology. 2018;128(1):85–96. doi:10.1097/ALN.000000000000192029019815
  • DevroeS, Van de VeldeM, RexS. General anesthesia for caesarean section. Curr Opin Anaesthesiol. 2015;28(3):240–246. doi:10.1097/ACO.000000000000018525827280