733
Views
79
CrossRef citations to date
0
Altmetric
Review

Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer Therapy

, , , , ORCID Icon, ORCID Icon & show all
Pages 3625-3649 | Published online: 08 Sep 2020

References

  • Du RusquecP, de CalbiacO, RobertM, et al. Clinical utility of pembrolizumab in the management of advanced solid tumors: an evidence-based review on the emerging new data. Cancer Manag Res. 2019;11(4297):4297–4312. doi:10.2147/CMAR.S15102331190995
  • FranciscoLM, SagePT, SharpeAH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236(1):219–242. doi:10.1111/j.1600-065X.2010.00923.x20636820
  • GongJ, Chehrazi-RaffleA, ReddiS, et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8. doi:10.1186/s40425-018-0316-z29357948
  • IshidaY, AgataY, ShibaharaK, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–3895. doi:10.1002/j.1460-2075.1992.tb05481.x1396582
  • AgataY, KawasakiA, NishimuraH, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–772. doi:10.1093/intimm/8.5.7658671665
  • IwaiY, HamanishiJ, ChamotoK, et al. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26. doi:10.1186/s12929-017-0329-928376884
  • OkazakiT, HonjoT. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–824. doi:10.1093/intimm/dxm05717606980
  • NishimuraH, HonjoT, MinatoN. Facilitation of β selection and modification of positive selection in the thymus of PD-1–deficient mice. J Exp Med. 2000;191(5):891–898. doi:10.1084/jem.191.5.89110704469
  • NakamuraY. Biomarkers for immune checkpoint inhibitor-mediated tumor response and adverse events. Front Med. 2019;6:119. doi:10.3389/fmed.2019.00119
  • InokuchiJ, EtoM. Profile of pembrolizumab in the treatment of patients with unresectable or metastatic urothelial carcinoma. Cancer Manag Res. 2019;11:4519–4528. doi:10.2147/CMAR.S16770831191013
  • KwokG, YauTCC, ChiuJW, et al. Pembrolizumab (Keytruda). Hum Vaccin Immunother 2016;12(11):2777–2789. doi:10.1080/21645515.2016.1199310
  • FreemanGJ, LongAJ, IwaiY, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034. doi:10.1084/jem.192.7.102711015443
  • LatchmanY, WoodCR, ChernovaT, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–268. doi:10.1038/8533011224527
  • DongH, StromeSE, SalomaoDR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi:10.1038/nm73012091876
  • CarterL, FouserLA, JussifJ, et al. PD-1: PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol. 2002;32(3):634–643. doi:10.1002/1521-4141(200203)32:3<634::AID-IMMU634>3.0.CO;2-911857337
  • KeirME, FreemanGJ, SharpeAH. PD-1 regulates self-reactive CD8 + T cell responses to antigen in lymph nodes and tissues. J Immunol. 2007;179(8):5064–5070. doi:10.4049/jimmunol.179.8.506417911591
  • BlankC, BrownI, MarksR, et al. Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double-negative TCR-transgenic T cells. J Immunol. 2003;171(9):4574–4581. doi:10.4049/jimmunol.171.9.457414568931
  • ZucchelliS, HollerP, YamagataT, et al. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity. 2005;22(3):385–396. doi:10.1016/j.immuni.2005.01.01515780994
  • ProbstHC, McCoyK, OkazakiT, et al. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol. 2005;6(3):280–286. doi:10.1038/ni116515685176
  • ParryRV, ChemnitzJM, FrauwirthKA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–9553. doi:10.1128/MCB.25.21.9543-9553.200516227604
  • Marquez-RodasI, CerezuelaP, SoriaA, et al. Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann Trans Med. 2015;3:18.
  • SunX, RoudiR, DaiT, et al. Immune-related adverse events associated with programmed cell death protein-1 and programmed cell death ligand 1 inhibitors for non-small cell lung cancer: a PRISMA systematic review and meta-analysis. BMC Cancer. 2019;19(1):558. doi:10.1186/s12885-019-5701-631182061
  • GreenwaldRJ, FreemanGJ, SharpeAH. The B7 family revisited. Annu Rev Immunol. 2005;23(1):515–548. doi:10.1146/annurev.immunol.23.021704.11561115771580
  • IwaiY, IshidaM, TanakaY, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–12297. doi:10.1073/pnas.19246109912218188
  • GoepfertK, DinsartC, RommelaereJ, et al. Rational combination of parvovirus H1 with CTLA-4 and PD-1 checkpoint inhibitors dampens the tumor induced immune silencing. Front Oncol. 2019;9:425. doi:10.3389/fonc.2019.0042531192129
  • IchikiY, ChikaishiY, MatsumiyaH, et al. Prognostic factors of advanced or postoperative recurrent non-small cell lung cancer targeted with immune check point inhibitors. J Thorac Dis. 2019;1(4):1117–1123. doi:10.21037/jtd.2019.04.41
  • AlsaabHO, SauS, AlzhraniR, et al. PD-1 and PD-L1 checkpoint signaling inhibitor for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. doi:10.3389/fphar.2017.0056128878676
  • SunC, MezzadraR, SchumacherTN. Schumacher. regulation and function of the PD-L1 checkpoint. Immunity. 2018;48(3):434–452. doi:10.1016/j.immuni.2018.03.01429562194
  • HornL, MansfieldAS, SzczesnaA, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–2229. doi:10.1056/NEJMoa180906430280641
  • RizviNA, HellmannMD, SnyderA, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–128. doi:10.1126/science.aaa134825765070
  • WangC, QiaoW, JiangY, et al. Effect of sex on the efficacy of patients receiving immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer Med. 2019;8(8):4023–4031.31165589
  • SignorelliD, GiannatempoP, GraziaG, et al. Patients selection for immunotherapy in solid tumors: overcome the naïve vision of a single biomarker. Biomed Res Int. 2019;2019:1–15. doi:10.1155/2019/9056417
  • ReckM, Rodriguez-AbreuD, RobinsonAG, et al. Pembrolizumab versus chemotherapy for PD-L1 positive non small-cell lung cancer. N Engl J Med. 2016;375(19):1823–1833. doi:10.1056/NEJMoa160677427718847
  • JelinekT, MihalyovaJ, KascakM, et al. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immuology. 2017;152(3):357–371.
  • JenkinsRW, BarbieDA, FlahertyKT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(1):9–16. doi:10.1038/bjc.2017.43429319049
  • Magiera-MularzK, SkalniakL, ZakKM, et al. Bioactive macrocyclic inhibitors of the PD-1/PD-L1 immune checkpoint. Angew Chem Int Ed Engl. 2017;56(44):13732–13735. doi:10.1002/anie.20170770728881104
  • NishijimaTF, ShacharSS, NyropKA, et al. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. The Oncologist. 2017;22(4):470–479. doi:10.1634/theoncologist.2016-041928275115
  • RizviH, Sanchez-VegaF, LaK, et al. Molecular determinants of response to anti–programmed cell death (PD)-1 and anti–Programmed Death-Ligand 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–641. doi:10.1200/JCO.2017.75.338429337640
  • SunshineJ, TaubeJM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32–38. doi:10.1016/j.coph.2015.05.01126047524
  • SynNL, TengMWL, MokTSK, et al. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–e741. doi:10.1016/S1470-2045(17)30607-129208439
  • TeufelA, ZhanT, HartelN, et al. Management of immune related adverse events induced by immune checkpoint inhibition. Cancer Lett. 2019;456:80–87. doi:10.1016/j.canlet.2019.04.01831051213
  • NiD, AlZahraniF, SmylieM. AIHA and pancytopenia as complications of pembrolizumab therapy for metastatic melanoma: a case report. Case Rep Oncol. 2019;12(2):456–465. doi:10.1159/00050085631275137
  • HamidO, RobertC, DaudA, et al. Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. N Engl J Med. 2013;369(2):134–144. doi:10.1056/NEJMoa130513323724846
  • RobertC, RibasA, WolchokJD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–1117. doi:10.1016/S0140-6736(14)60958-225034862
  • RibasA, PuzanovI, DummerR, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–918. doi:10.1016/S1470-2045(15)00083-226115796
  • RobertC, RibasA, SchachterJ, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20(9):1239–1251. doi:10.1016/S1470-2045(19)30388-231345627
  • EggermontAMM, BlankCU, MandalaM, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–1801. doi:10.1056/NEJMoa180235729658430
  • GaronEB, RizviNA, HuiR, et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028. doi:10.1056/NEJMoa150182425891174
  • ChatterjeeM, TurnerDC, FelipE, et al. Systematic evaluation of pembrolizumab dosing in patients with advanced non-small-cell lung cancer. Ann Oncol. 2016;27(7):1291–1298. doi:10.1093/annonc/mdw17427117531
  • HerbstRS, BaasP, KimD-W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–1550. doi:10.1016/S0140-6736(15)01281-726712084
  • LangerCJ, GadgeelSM, BorghaeiH, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–1508. doi:10.1016/S1470-2045(16)30498-327745820
  • GandhiL, Rodríguez-AbreuD, GadgeelS, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–2092. doi:10.1056/NEJMoa180100529658856
  • MokTSK, WuY-L, KudabaI, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–1830. doi:10.1016/S0140-6736(18)32409-730955977
  • Paz-AresL, LuftA, VicenteD, et al. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N Engl J Med. 2018;379(21):2040–2051. doi:10.1056/NEJMoa181086530280635
  • BalarAV, CastellanoD, O’DonnellPH, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483–1492. doi:10.1016/S1470-2045(17)30616-228967485
  • LarkinsE, G MB, YuanW, et al. US food and drug administration approval summary: pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist. 2017;22(7):873–878. doi:10.1634/theoncologist.2016-049628533473
  • LeDT, UramJN, WangH, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi:10.1056/NEJMoa150059626028255
  • LeDT, KavanP, KimTW, et al. KEYNOTE-164: pembrolizumab for patients with advanced microsatellite instability high (MSI-H) colorectal cancer. J Clin Oncol. 2018;36(15_suppl):3514. doi:10.1200/JCO.2018.36.15_suppl.3514
  • LeDT, KimTW, Van CutsemE, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–19. doi:10.1200/JCO.19.0210731725351
  • BrahmerJR, DrakeCG, WollnerI, et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167. doi:10.1200/JCO.2009.26.760920516446
  • RobertC, LongGV, BradyB, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330. doi:10.1056/NEJMoa141208225399552
  • WangC, ThudiumKB, HanM, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2(9):846–856. doi:10.1158/2326-6066.CIR-14-004024872026
  • KamimuraN, WolfAM, IwaiY. Development of cancer immunotherapy targeting the PD-1 pathway. J Nippon Med Sch. 2019;86(1):10–14. doi:10.1272/jnms.JNMS.2019_86-230918149
  • TopalianSL, HodiFS, BrahmerJR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454. doi:10.1056/NEJMoa120069022658127
  • WeberJ, MandalaM, Del VecchioM, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–1835. doi:10.1056/NEJMoa170903028891423
  • KazandjianD, KhozinS, BlumenthalG, et al. Benefit-risk summary of nivolumab for patients with metastatic squamous cell lung cancer after platinum-based chemotherapy: a report from the US Food and Drug Administration. JAMA Oncol. 2016;2(1):118–122. doi:10.1001/jamaoncol.2015.393426470053
  • BorghaeiH, Paz-AresL, HornL, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639. doi:10.1056/NEJMoa150764326412456
  • MotzerRJ, EscudierB, McDermottDF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–1813. doi:10.1056/NEJMoa151066526406148
  • AmbavaneA, YangS, AtkinsMB, et al. Clinical and economic outcomes of treatment sequences for intermediate-to poor-risk advanced renal cell carcinoma. Immunotherapy. 2020;12(1):37–51. doi:10.2217/imt-2019-019931992108
  • MotzerRJ, RiniBI, McDermottDF, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019;20(10):1370–1385. doi:10.1016/S1470-2045(19)30413-931427204
  • GettingerSN, HornL, GandhiL, et al. Overall survival and long-term safety of nivolumab (anti–programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non–small-cell lung cancer. J Clin Oncol. 2015;33(18):2004. doi:10.1200/JCO.2014.58.370825897158
  • HellmannMD, RizviNA, GoldmanJW, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41. doi:10.1016/S1470-2045(16)30624-627932067
  • AhmedSR, PetersenE, PatelR, et al. Cemiplimab-rwlc as first and only treatment for advanced cutaneous squamous cell carcinoma. Expert Rev Clin Pharmacol. 2019;12(10):947–951. doi:10.1080/17512433.2019.166502631524530
  • KaplonH, ReichertJM. Antibodies to watch in 2018. MAbs. 2018;10(2):183–203. doi:10.1080/19420862.2018.141567129300693
  • MarkhamA, DugganS. Cemiplimab: first global approval. Drugs. 2018;78(17):1841–1846. doi:10.1007/s40265-018-1012-530456447
  • MigdenMR, RischinD, SchmultsCD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379(4):341–351. doi:10.1056/NEJMoa180513129863979
  • MigdenMR, KhushalaniNI, ChangALS, et al. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: results from an open-label, phase 2, single-arm trial. Lancet Oncol. 2020;21(2):294–305. doi:10.1016/S1470-2045(19)30728-431952975
  • HerbstRS, SoriaJC, KowanetzM, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–567. doi:10.1038/nature1401125428504
  • RosenbergJE, Hoffman-CensitsJ, PowlesT, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–1920. doi:10.1016/S0140-6736(16)00561-426952546
  • ApoloAB, InfanteJR, BalmanoukianA, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase ib study. J Clin Oncol. 2017;35(19):2117–2124. doi:10.1200/JCO.2016.71.679528375787
  • GaiserMR, BongiornoM, BrownellI. PD-L1 inhibition with avelumab for metastatic Merkel cell carcinoma. Expert Rev Clin Pharmacol. 2018;11(4):345–359. doi:10.1080/17512433.2018.144596629478343
  • D’AngeloSP, RussellJ, LebbéC, et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic Merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018;4(9):. doi:10.1001/jamaoncol.2018.0077
  • MotzerRJ, PenkovK, HaanenJ, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–1115. doi:10.1056/NEJMoa181604730779531
  • MezquitaL, PlanchardD. Durvalumab for the treatment of non-small cell lung cancer. Expert Rev Respir Med. 2018;12(8):627–639. doi:10.1080/17476348.2018.149457529958099
  • MezquitaL, PlanchardD. Durvalumab in non-small-cell lung cancer patients: current developments. Future Oncol. 2018;14(3):205–222. doi:10.2217/fon-2017-037329140105
  • StewartR, MorrowM, HammondSA, et al. Identification and characterization of MEDI4736, an antagonistic anti–PD-L1 monoclonal antibody. Cancer Immunol Res. 2015;3(9):1052–1062. doi:10.1158/2326-6066.CIR-14-019125943534
  • OnoyamaT, TakedaY, YamashitaT, et al. Programmed cell death-1 inhibitor-related sclerosing cholangitis: a systematic review. World J Gastroenterol. 2020;26(3):353. doi:10.3748/wjg.v26.i3.35331988594
  • GuzikK, ZakKM, GrudnikP, et al. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J Med Chem. 2017;60(13):5857–5867. doi:10.1021/acs.jmedchem.7b0029328613862
  • ShaabaniS, HuizingaHPS, ButeraR, et al. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015–2018). Expert Opin Ther Pat. 2018;28(9):665–678. doi:10.1080/13543776.2018.151270630107136
  • SasikumarPG, RamachandraM. Small-molecule immune checkpoint inhibitors targeting PD-1/PD-L1 and other emerging checkpoint pathways. BioDrugs. 2018;32(5):481–497. doi:10.1007/s40259-018-0303-430168070
  • BoohakerRJ, SambandamV, SeguraI, et al. Rational design and development of a peptide inhibitor for the PD-1/PD-L1 interaction. Cancer Lett. 2018;434:11–21. doi:10.1016/j.canlet.2018.04.03129920293
  • MusielakB, KocikJ, SkalniakL, et al. CA-170 – a potent small-molecule PD-L1 inhibitor or not? Molecules. 2019;24(15):2804. doi:10.3390/molecules24152804
  • SkalniakL, ZakKM, GuzikK, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017;8(42):72167. doi:10.18632/oncotarget.2005029069777
  • KawashitaS, AoyagiK, YamanakaH, et al. Symmetry-based ligand design and evaluation of small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 interaction. Bioorg Med Chem Lett. 2019;29(17):2464–2467. doi:10.1016/j.bmcl.2019.07.02731351692
  • SasikumarPG, RamachandraM, NaremaddepalliSS, inventors; Aurigene Discovery Technologies Ltd, assignee. 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators. European patent ES2682040T3. 2018 9 18.
  • YiqianW, BangF, ZhangY, XiangyongLIU, WangJ, LiemingD, inventors; Betta Pharmaceuticals Co., Ltd, assignee. Immunomodulators, compositions and methods thereof. World Intellectual Property Organization patent WO2019192506A1. 2019 10 10.
  • FuB, ZhangY, WangY, LiuX, WangJ, DingL, inventors; Betta Pharmaceuticals Co., Ltd, assignee. Immunomodulators, compositions and methods thereof. World Intellectual Property Organization patent WO2020011243A1. 2020 1 16.
  • ZhangY, WangY, FuB, ChenJ, WangJ, DingL, inventors; Betta Pharmaceuticals Co., Ltd, assignee. Immunomodulators, compositions and methods thereof. World Intellectual Property Organization patent WO2020015716A1. 2020 1 23.
  • WangY, ZhangY, FuB, WangJ, DingL, inventors; Betta Pharmaceuticals Co., Ltd, assignee. Immunomodulators, compositions and methods thereof. World Intellectual Property Organization patent WO2020015717A1. 2020 1 23.
  • Kap-Sun YeungJ, ZhuP, Michael Scola, inventors; Bristol Myers Squibb Co, assignee. 2,8-diacyl-2,8-diazaspiro[5.5]undecane compounds useful as immunomodulators. World Intellectual Property Organization patent WO2019147662A1. 2019 8 1.
  • Kap-Sun YeungDR, St. LaurentDR, LangleyP, ScolaM, inventors; Bristol Myers Squibb Co, assignee. Compounds useful as immunomodulators. World Intellectual Property Organization patent WO2019169123A1. 2019 9 6.
  • LangeC, PunnaS, SinghR, YangJ, ZhangP, inventors; Chemocentryx Inc, assignee. Indane-amines as PD-L1 antagonists. United States patent US 10568874. 2020 2 25.
  • AktoudianakisE, ChoA, DuZ, et al.; inventors; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. United States patent US20180305315A1. 2018 10 25.
  • AktoudianakisE, ApplebyT, ChoA, et al.; inventors; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. World Intellectual Property Organization patent WO2018195321A1. 2018 10 25.
  • AktoudianakisE, ChoA, DuZ, et al., inventors; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. United States patent application US 16274,106. 2019 9 5.
  • AktoudianakisE, ChoA, DuZ, et al., inventors; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. United States patent application US 16388,517. 2019 11 14.
  • AktoudianakisE, ChoA, DuZ, et al.; inventors; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. World Intellectual Property Organization patent WO2019160882A1. 2019 8 22.
  • AktoudianakisE, ChoA, DuZ, et al.; inventors; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. World Intellectual Property Organization patent WO2019204609A1. 2019 10 24.
  • AktoudianakisE, ChoA, GraupeM, et al.; Gilead Sciences Inc, assignee. Pd-1/pd-l1 inhibitors. United States patent application US 16510,647. 2020 1 16.
  • XuY, HuangL, LinD, HuH, inventors; Guangzhou Dankang Medicine and biotechnology CO. LTD, assignee. A compound containing aromatic ring and its application. Chinese patent CN110092745A. 2019 8 6.
  • XuY, HuangL, LinD, HuH, inventors; Guangzhou Dankang Medicine and biotechnology CO. LTD, assignee. Compounds containing benzene ring, preparation method and application. World Intellectual Property Organization patent WO2020011246A1. 2020 1 16.
  • WuLX, LiJW, YaoWQ, inventors; Incyte Corporation, assignee. Heterocyclic compounds as immunomodulators. World Intellectual Property Organization patent WO2019191707A1. 2019 10 3.
  • WuLX, XiaoKJ, YaoWQ, inventors; Incyte Corporation, assignee. Tetrahydro-imidazo[4,5-c]pyridine derivatives as pd-l1 immunomodulators. World Intellectual Property Organization patent WO2019217821A1. 2019 11 14.
  • PengJB, GongCJ, MaoJR, et al., inventors; Shanghai Haiyan Pharm Tech&Yangtze River Pharmaceutical Group, assignee. Immunomodulator and its preparation and application in medicine. Chinese patent CN109956898A. 2019 7 2.
  • PengJB, GongCJ, MaoJR, et al., inventors; Shanghai Haiyan Pharm Tech&Yangtze River Pharmaceutical Group, assignee. Immunomodulator and its preparation and application in medicine. World Intellectual Property Organization patent WO2019120297A1. 2019 6 27.
  • ZhangY, DengJW, JiangL, et al., inventors; Shanghai Yinuo Pharmaceutical CO. LTD, assignee. Preparation and application of N-containing heterocyclic compounds with immunomodulatory function. Chinese patent CN110790758A. 2020 2 14.
  • ZhangY, DengJW, JiangL, et al., inventors; Shanghai Yinuo Pharmaceutical CO. LTD, assignee. Preparation and application of a class of aromatic amines with immunomodulatory function. Chinese patent CN110790770A. 2020 2 14.
  • ZhangY, DengJW, FengZY, et al., inventors; Shanghai Yinuo Pharmaceutical CO. LTD, assignee. Preparation and application of a kind of aromatic compounds with immunomodulatory function. World Intellectual Property Organization patent WO2020025030A1. 2020 2 6.
  • QingMZ, GongP, ZhaoYF, inventors; Shenyang Pharmaceutical University, assignee. Indolines used as immunomodulators and their preparation. Chinese patent CN110128415A. 2019 8 16.
  • YuJD, XinLJ, ShanS, et al., inventors; Shenzhen Chipscreen Biosci, assignee. Biphenyl compounds as immunomodulators and their applications. Chinese patent CN110872275A. 2020 3 10.
  • SasikumarPG, RamachandraM, VadlamaniSK, et al., inventors; Aurigene Discovery Technologies Ltd, assignee. Immunosuppression modulating compounds. United States patent US20150087581A1. 2017 10 10.
  • SasikumarPG, RamachandraM, NaremaddepalliSS, inventors; Aurigene Discovery Technologies Ltd, assignee. Peptidomimetic compounds as immunomodulators. United States patent US 9044442. 2015 6 2.
  • SasikumarPG, RamachandraM, VadlamaniSK, et al., inventors; Aurigene Discovery Technologies Ltd, assignee. Immunosuppressant regulation compound. Chinese patent CN103096915B. 2016 8 3.
  • SasikumarPG, RamachandraM, VadlamaniSK, et al., inventors; Aurigene Discovery Technologies Ltd, assignee. Immunosuppression modulating compounds. United States patent US 9,783,578. 2017 10 10.
  • AllenMP, GillisEP, LangleyDR, et al., inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. World Intellectual Property Organization patent WO2017151830A1. 2017 9 8.
  • AllenMP, GillisEP, LangleyDR, et al; inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent US 10143746. 2018 12 4.
  • MapelliC, AllenMP, ScolaPM, inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent US 9861680. 2018 1 9.
  • MillerMM, AllenMP, BowsherMS, et al. Macrocyclic inhibitors of the PD-1/PD-L1 and CD80 (B7-1)/PD-L1 protein/protein interactions. United States patent US 9879046. 2018 1 30.
  • SunLQ, ZhaoQ, GillisEP, et al., Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent US 9944678. 2018 4 17.
  • GillmanKW, GoodrichJ, BoyKM, et al., inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent application US 15822744. 2018 3 29.
  • GillmanKW, GoodrichJ, SunLQ, MullE, LangleyDR, ScolaPM, inventors; Bristol Myers Squibb Co, assignee. Immunomodulators acting as antagonists of pd-1. World Intellectual Property Organization patent WO2018237153A1. 2018 12 27.
  • SunLQ, ZhaoQ, GillisEP, et al., Bristol Myers Squibb Co, assignee. Immunmodulatorer. European patent DK3233887T3. 2019 5 13.
  • MillerMM, MapelliC, AllenMP, et al.; Bristol Myers Squibb Co, assignee. Makrocyclische inhibitoren der pd-1/pd-l1 und cd80(b7-1)/pd-li-protein/protein-interaktionen. European patent EP3191113B1. 2019 11 6.
  • SunLQ, ZhaoQ, GillisEP, et al; Bristol Myers Squibb Co, assignee. Immunomodulatoren. European patent EP3233887B1. 2019 2 6.
  • MillerMM, AllenMP, LiL, et al., inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent US 10358463. 2019 7 23.
  • MillerMM, AllenMP, LiL, et al., inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent US 10450347. 2019 10 22.
  • GillmanKW, GoodrichJ, LangleyDR, ScolaPM, inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. United States patent application US 16462,508. 2019 10 24.
  • MillerMM, AllenMP, LiL, inventors; Bristol Myers Squibb Co, assignee. Immunomodulators. World Intellectual Property Organization patent WO2019070643A1. 2019 4 11.
  • MillerMM, MapelliC, AllenMP, et al., Macrocyclic inhibitors of the PD-1/PD-L1 and CD80 (B7-1)/PD-L1 protein/protein interactions. United States patent US 10538555. 2020 1 21.
  • QinM, CaoQ, WuX, et al. Discovery of the programmed cell death-1/programmed cell death-ligand 1 interaction inhibitors bearing an indoline scaffold. Eur J Med Chem. 2020;186:111856. doi:10.1016/j.ejmech.2019.11185631734021
  • BalarAV, WeberJS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. 2017;66(5):551–564. doi:10.1007/s00262-017-1954-628213726
  • YangJ, LongqinH. Immunomodulators targeting the PD‐1/PD‐L1 protein‐protein interaction: from antibodies to small molecules. Med Res Rev. 2019;39(1):265–301. doi:10.1002/med.2153030215856
  • GanesanA, AhmedM, OkoyeI, et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep. 2019;9(1):1–19. doi:10.1038/s41598-019-48826-630626917
  • ChenR, ZinzaniPL, FanaleMA, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125. doi:10.1200/JCO.2016.72.131628441111
  • FuchsCS, DoiT, JangRW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5):e180013–e180013. doi:10.1001/jamaoncol.2018.001329543932
  • Fashoyin‐AjeL, DonoghueM, ChenH, et al. FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD‐L1. Oncologist. 2019;24(1):103. doi:10.1634/theoncologist.2018-022130120163
  • ChungHC, RosW, DelordJP, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37(17):1470–1478. doi:10.1200/JCO.18.0126530943124
  • ArmandP, RodigS, MelnichenkoV, et al. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J Clin Oncol. 2019;37(34):3291–3299. doi:10.1200/JCO.19.0138931609651
  • ZhuAX, FinnRS, EdelineJ, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–952. doi:10.1016/S1470-2045(18)30351-629875066
  • NghiemP, BhatiaS, LipsonEJ, et al. Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving pembrolizumab as first-line therapy. J Clin Oncol. 2019;37(9):693. doi:10.1200/JCO.18.0189630726175
  • RiniBI, PlimackER, StusV, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–1127. doi:10.1056/NEJMoa181671430779529
  • Merck Sharp & Dohme Corp. A Phase III Randomized Open-Label Study of Single Agent Pembrolizumab vs Physicians’ Choice of Single Agent Docetaxel, Paclitaxel, or Irinotecan in Subjects With Advanced/Metastatic Adenocarcinoma and Squamous Cell Carcinoma of the Esophagus That Have Progressed After First-Line Standard Therapy (KEYNOTE-181). NLM identifier: NCT02564263 Available from: https://clinicaltrials.gov/ct2/show/study/NCT02564263. Accessed 820, 2020.
  • ShahMA, KojimaT, HochhauserD, et al. Efficacy and Safety of Pembrolizumab for Heavily Pretreated Patients With Advanced, Metastatic Adenocarcinoma or Squamous Cell Carcinoma of the Esophagus: The Phase 2 KEYNOTE-180 Study. JAMA Oncol 2019;5(4):546–550. doi:10.1001/jamaoncol.2018.5441
  • Eisai Inc. A Multicenter, Open-Label Phase 1b/2 Trial of Lenvatinib (E7080) Plus Pembrolizumab in Subjects With Selected Solid Tumors. NLM identifier: NCT02501096. Available from: https://clinicaltrials.gov/ct2/show/study/NCT02501096. Accessed August 20, 2020.
  • Merck Sharp & Dohme Corp. A Phase II Clinical Trial to Study the Efficacy and Safety of Pembrolizumab (MK-3475) in Subjects With High Risk Non-muscle Invasive Bladder Cancer (NMIBC) Unresponsive to Bacillus Calmette-Guerin (BCG) Therapy. NLM identifier: NCT02625961 Available from: https://clinicaltrials.gov/ct2/show/study/NCT02625961. Accessed 820, 2020. 
  • Bristol-Myers Squibb. Non-Comparative, Multi-Cohort, Single Arm, Open-Label, Phase 2 Study of Nivolumab (BMS-936558) in Classical Hodgkin Lymphoma (cHL) Subjects. NLM identifier: NCT02181738 Available from: https://clinicaltrials.gov/ct2/show/study/NCT02181738. Accessed 820, 2020. 
  • Bristol-Myers Squibb. Multiple Phase 1/2 Cohorts of Nivolumab Monotherapy or Nivolumab Combination Regimens Across Relapsed/Refractory Hematologic Malignancies. NLM identifier: NCT01592370 Available from: https://clinicaltrials.gov/ct2/show/study/NCT01592370. Accessed 820, 2020. 
  • FerrisRL, BlumenscheinG Jr, FayetteJ, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–1867. doi:10.1056/NEJMoa160225227718784
  • Bristol-Myers Squibb. A Phase II Single Arm Clinical Trial of Nivolumab (BMS-936558) in Subjects With Metastatic or Unresectable Urothelial Cancer Who Have Progressed or Recurred Following Treatment With a Platinum Agent. NLM identifier: NCT02387996 Available from: https://clinicaltrials.gov/ct2/show/study/NCT02387996. Accessed 820, 2020. 
  • SBristol-Myers Squibb. A Phase 2 Clinical Trial of Nivolumab, or Nivolumab Combinations in Recurrent and Metastatic Microsatellite High (MSI-H) and Non-MSI-H Colon Cancer. NLM identifier: NCT02060188 Available from: https://clinicaltrials.gov/ct2/show/study/NCT02060188. Accessed 820, 2020. 
  • Bristol-Myers Squibb. A Phase 1/2, Dose-escalation, Open-label, Non-comparative Study of Nivolumab or Nivolumab in Combination With Ipilimumab in Advanced Hepatocellular Carcinoma Subjects With or Without Chronic Viral Hepatitis; and a Randomized, Open-label Study of Nivolumab vs Sorafenib in Advanced Hepatocellular Carcinoma Subjects Who Are Naive to Systemic Therapy. NLM identifier: NCT01658878 Available from: https://clinicaltrials.gov/ct2/show/study/NCT01658878. Accessed 820, 2020. 
  • Incyte Corporation. A phase 3 study of pembrolizumab + epacadostat or placebo in subjects with unresectable or metastatic melanoma (keynote-252/ECHO-301). NLM identifier: NCT02752074 Available from: https://clinicaltrials.gov/ct2/show/NCT02752074. Accessed 519, 2020.
  • SquibbB-M. A single-arm, open-label, multicenter clinical trial with nivolumab (BMS-936558) for subjects with histologically confirmed stage III (unresectable) or stage IV melanoma progressing post prior treatment containing an anti-CTLA4 monoclonal antibody (CheckMate 172). NLM identifier: NCT02156804 Available from: https://clinicaltrials.gov/ct2/show/NCT02156804. Accessed 519, 2020.
  • RocheH-L. A study of atezolizumab in participants with locally advanced or metastatic urothelial bladder cancer (cohort 2). NLM identifier: NCT02108652 Available from: https://clinicaltrials.gov/ct2/show/NCT02108652. Accessed 519, 2020..
  • EMD Serono Research & Development Institute, Inc. Avelumab in non-small cell lung cancer (JAVELIN lung 200). NLM identifier: NCT02395172 Available from: https://clinicaltrials.gov/ct2/show/NCT02395172. Accessed 519, 2020.
  • AstraZeneca. A global study to assess the effects of MEDI4736 following concurrent chemoradiation in Patients with stage III unresectable non-small Cell Lung Cancer (PACIFIC). NLM identifier: NCT02125461 Available from: https://clinicaltrials.gov/ct2/show/results/NCT02125461. Accessed 519, 2020.