121
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Effects of Saikosaponin D on CYP1A2 and CYP2D6 in HepaRG Cells

, , , , & ORCID Icon
Pages 5251-5258 | Published online: 26 Nov 2020

References

  • ShaikhAS, ThomasAB, ChitlangeSS. Herb-drug interaction studies of herbs used in treatment of cardiovascular disorders-a narrative review of preclinical and clinical studies. Phytother Res. 2020;34(5):1008–1026. doi:10.1002/ptr.658531908085
  • NiuL, DingL, LuC, et al. Flavokawain a inhibits cytochrome P450 in in vitro metabolic and inhibitory investigations. J Ethnopharmacol. 2016;191:350–359. doi:10.1016/j.jep.2016.06.03927318274
  • LiX, LiuR, ZhangL, et al. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol Res. 2017;125:105–113. doi:10.1016/j.phrs.2017.09.00228889972
  • YuanB, YangR, MaY, et al. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm Biol. 2017;55(1):620–635. doi:10.1080/13880209.2016.126243327951737
  • WongVK, ZhouH, CheungSSF, et al. Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation. J Cell Biochem. 2009;107(2):303–315. doi:10.1002/jcb.2212619301261
  • ZhongD, ZhangHG, JiangYD, et al. Saikosaponin-d: a potential chemotherapeutics in castration resistant prostate cancer by suppressing cancer metastases and cancer stem cell phenotypes. Biochem Biophys Res Commun. 2016;474(4):722–729. doi:10.1016/j.bbrc.2016.05.01727155154
  • LuGN, YuanZG, ZhangXL, et al. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. Int Immunopharmacol. 2012;14(1):121–126. doi:10.1016/j.intimp.2012.06.01022728095
  • LiXQ, SongYN, WangSJ, et al. Saikosaponins: a review of pharmacological effects. J Asian Nat Prod Res. 2018;20(5):399–411. doi:10.1080/10286020.2018.146593729726699
  • ZhangGS, HuPY, LiDX, et al. Formulations, hemolytic and pharmacokinetic studies on saikosaponin a and saikosaponin d compound liposomes. Molecules. 2015;20(4):5889–5907. doi:10.3390/molecules2004588925854754
  • DingWX, QiXR, ChenYW, et al. Cholesteryl hemisuccinate as liposomal membrane stabilizer and its use in the preparation of saikosaponin-D liposomes. Yao Xue Xue Bao. 2005;40(7):623–627.16196268
  • LewisDF. P450 structures and oxidative metabolism of xenobiotics. Pharmacogenomics. 2003;4(4):387–395. doi:10.1517/phgs.4.4.387.2275212831319
  • FaberMS, JetterA, FuhrU. Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97(3):125–134. doi:10.1111/j.1742-7843.2005.pto973160.x16128905
  • SychevDA, AshrafGM, SvistunovAA, et al. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther. 2018;12:1147–1156. doi:10.2147/DDDT.S149069
  • HuangSM, TempleR, ThrockmortonDC, et al. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther. 2007;81(2):298–304. doi:10.1038/sj.clpt.610005417259955
  • GriponP, RuminS, UrbanS, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA. 2002;99(24):15655–15660. doi:10.1073/pnas.23213769912432097
  • AnthérieuS, ChesnéC, LiR, et al. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos. 2010;38(3):516–525. doi:10.1124/dmd.109.03019720019244
  • BergerB, BachmannF, DuthalerU, et al. Cytochrome P450 enzymes involved in metoprolol metabolism and use of metoprolol as a CYP2D6 phenotyping probe drug. Front Pharmacol. 2018;9:774. doi:10.3389/fphar.2018.0077430087611
  • WuY, GengXC, WangJF, et al. The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol. 2016;32(1):37–59. doi:10.1007/s10565-016-9316-227027780
  • LeiteSB, Wilk-ZasadnaI, ZaldivarJM, et al. Three-dimensional HepaRG model as an attractive tool for toxicity testing. Toxicol Sci. 2012;130(1):106–116. doi:10.1093/toxsci/kfs23222843569
  • WangZ, LuoX, Anene-NzeluC, et al. HepaRG culture in tethered spheroids as an in vitro three-dimensional model for drug safety screening. J Appl Toxicol. 2015;35(8):909–917. doi:10.1002/jat.309025512232
  • AninatC, PitonA, GlaiseD, et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos. 2006;34(1):75–83. doi:10.1124/dmd.105.00675916204462
  • JiangB, MengL, ZhangF, et al. Enzyme-inducing effects of berberine on cytochrome P450 1A2 in vitro and in vivo. Life Sci. 2017;15(189):1–7. doi:10.1016/j.lfs.2017.09.011
  • VanLM, SardaS, HargreavesJA, et al. Metabolism of dextrorphan by CYP2D6 in different recombinantly expressed systems and its implications for the in vitro assessment of dextromethorphan metabolism. J Pharm Sci. 2009;98(2):763–771. doi:10.1002/jps.2145518543297
  • WangXM, PengYR, JingXY, et al. HPLC determination of phenacetin and its metabolite in rat plasma and microsome and its application. Chin Pharm Bull. 2013;29(4):591–592. doi:10.3969/j.issn.1001-1978.2013.04.034
  • HuiJM, GuoTL, YangZ, et al. Determination of CYP2D6 activity in rat microsomes and study on its kinetics with dextromethorphan in vitro. China J New Drugs Clin Res. 2013;32(9):744–748.
  • ShiM, CuiY, LiuC, et al. CYPs-mediated drug-drug interactions on psoralidin, isobavachalcone, neobavaisoflavone and daidzein in rats liver microsomes. Food Chem Toxicol. 2020;136:111027. doi:10.1016/j.fct.2019.11102731870919
  • WangL, YueH, HuangN, et al. Human cytochrome P450 enzyme inhibition profile of three flavonoids isolated from Psoralea corylifolia: in silico predictions and experimental validation. New J Chem. 2018;42(13):10922–10934. doi:10.1039/C7NJ00884H
  • WuML, LiYP, WeiYL, et al. Calycosin influences the metabolism of five probe drugs in rats. Drug Des Devel Ther. 2020;14:429–432. doi:10.2147/DDDT.S236221
  • LiXJY, LiXY, HuangN, et al. A comprehensive review and perspectives on pharmacology and toxicology of saikosaponins. Phytomedicine. 2018;15(50):73–87. doi:10.1016/j.phymed.2018.09.174
  • TianYD, LinS, YangPT, et al. Saikosaponin-d increases the radiosensitivity of hepatoma cells by adjusting cell autophagy. J Cancer. 2019;10(20):4947–4953. doi:10.7150/jca.3028631598167
  • XuZK, WeiH. Comparison of pharmacokinetics between recombinant liver microsomes with CYP3A4 and CYP3A29. Her Med. 2015;31(1):15–21. doi:10.3870/yydb.2015.01.004
  • ZhangYW, ZhengXW, LiuYL, et al. Effect of oridonin on cytochrome P450 expression and activities in HepaRG cell. Pharmacology. 2018;101(5–6):246–254. doi:10.1159/00048660029393278
  • LübberstedtM, Müller-VieiraU, MayerM, et al. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods. 2011;63(1):59–68. doi:10.1016/j.vascn.2010.04.01320460162
  • PernelleK, GuevelRL, GlaiseD, et al. Automated detection of hepatotoxic compounds in human hepatocytes using HepaRG cells and image-based analysis of mitochondrial dysfunction with JC-1 dye. Toxicol Appl Pharmacol. 2011;254(3):256–266. doi:10.1016/j.taap.2011.04.01821569786
  • AnderssonTB, KanebrattKP, KennaJG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol. 2012;8(7):909–920. doi:10.1517/17425255.2012.68515922568886
  • FerreiraA, RodriguesM, SilvestreS, et al. HepaRG cell line as an in vitro model for screening drug-drug interactions mediated by metabolic induction: amiodarone used as a model substance. Toxicol in Vitro. 2014;28(8):1531–1535. doi:10.1016/j.tiv.2014.08.00425172297
  • YoungCKJ, YoungMJ. Comparison of HepaRG cells following growth in proliferative and differentiated culture conditions reveals distinct bioenergetic profiles. Cell Cycle. 2019;18(4):476–499. doi:10.1080/15384101.2019.157813330755072
  • ChengY, HuangY, TianY, et al. Assessment of the effects of Radix Bupleuri and vinegar-baked Radix Bupleuri on cytochrome 450 activity by a six-drug cocktail approach. Chin J Nat Med. 2013;113(3):0302–0308. doi:10.1016/S1875-5364(13)60033-3
  • YuT, ChenX, WangY, et al. Modulatory effects of extracts of vinegar-baked Radix Bupleuri and saikosaponins on the activity of cytochrome P450 enzymes in vitro. Xenobiotica. 2014;44(10):861–867. doi:10.3109/00498254.2014.91460024779639
  • Gómez-LechónMJ, DonatoMT, CastellJV, et al. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab. 2004;5(5):443–462. doi:10.2174/138920004333541415544436
  • ChoudharyC, KumarC, GnadF, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–840. doi:10.1126/science.117537119608861
  • CorreiaMA, DavollSH, WrightonSA, et al. Degradation of rat liver cytochromes P450 3A after their inactivation by 3, 5-dicarbethoxy-2, 6-dimethyl-4-ethyl-1, 4-dihydropyridine: characterization of the proteolytic system. Arch Biochem Biophys. 1992;297(2):228–238. doi:10.1016/0003-9861(92)90666-k1497342
  • ZangerM, SchwabM. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. doi:10.1016/j.pharmthera.2012.12.00723333322
  • PragyanSS, KesharwaniPP, NandekarPP, et al. Predicting drug metabolism by CYP1A1, CYP1A2, and CYP1B1: insights from MetaSite, molecular docking and quantum chemical calculations. Mol Divers. 2014;18(4):865–878. doi:10.1007/s11030-014-9534-625028215
  • Ingelman-SundbergM. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13. doi:10.1038/sj.tpj.650028515492763
  • KawakamiM, Takenoshita-NakayaS, TakebaY, et al. Evaluation of CYP2D6 protein expression and activity in the small intestine to determine its metabolic capability in the Japanese population. Biol Pharm Bull. 2017;40(9):1344. doi:10.1248/bpb.b16-0037028626197
  • ShiragaT, MatsudaH, NagaseK, et al. Metabolism of FK506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog and human liver microsomes. Biochem Pharmacol. 1994;47(4):727–735. doi:10.1016/0006-2952(94)90136-87510480