167
Views
13
CrossRef citations to date
0
Altmetric
Commentary

Challenges for Mesenchymal Stem Cell-Based Therapy for COVID-19

, &
Pages 3995-4001 | Published online: 29 Sep 2020

References

  • WangD, HuB, HuC, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069.32031570
  • ZhouF, YuT, DuR, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-332171076
  • MolinaER, SmithBT, ShahSR, ShinH, MikosAG. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J Control Release. 2015;219:107–118. doi:10.1016/j.jconrel.2015.08.03826307349
  • KhouryM, CuencaJ, CruzFF, FigueroaFE, RoccoPRM, WeissDJ. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J. 2020. doi:10.1183/13993003.00858-2020
  • LiuS, PengD, QiuH, YangK, FuZ, ZouL. Mesenchymal stem cells as a potential therapy for COVID-19. Stem Cell Res Ther. 2020;11(1):169. doi:10.1186/s13287-020-01678-832366290
  • GalipeauJ, SensébéL. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–833. doi:10.1016/j.stem.2018.05.00429859173
  • WalterJ, WareLB, MatthayMA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med. 2014;2(12):1016–1026. doi:10.1016/S2213-2600(14)70217-625465643
  • LeeJW, FangX, KrasnodembskayaA, HowardJP, MatthayMA. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells. 2011;29(6):913–919.21506195
  • SpeesJL, LeeRH, GregoryCA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7(1):125.27581859
  • NémethK, LeelahavanichkulA, YuenPS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–49.19098906
  • LengZ, ZhuR, HouW, et al. Transplantation of ACE2− mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216–228. doi:10.14336/AD.2020.022832257537
  • GuoZ, ChenY, LuoX, HeX, ZhangY, WangJ. Administration of umbilical cord mesenchymal stem cells in patients with severe COVID-19 pneumonia. Crit Care. 2020;24(1):420. doi:10.1186/s13054-020-03142-832653043
  • SenguptaV, SenguptaS, LazoA, WoodsP, NolanA, BremerN. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020;29(12):747–754. doi:10.1089/scd.2020.008032380908
  • ZhengG, HuangL, TongH, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15(1):39. doi:10.1186/1465-9921-15-3924708472
  • WilsonJG, LiuKD, ZhuoH, CaballeroL, McMillanM, FangX. Mesenchymal stem (stromal) cells for treatment of ARDS: a Phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32. doi:10.1016/S2213-2600(14)70291-725529339
  • MatthayMA, CalfeeCS, ZhuoH, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019;7(2):154–162. doi:10.1016/S2213-2600(18)30418-130455077
  • HeX, AiS, GuoW, et al. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: a phase 1 clinical trial. Transl Res. 2018;199:52–61.30044959
  • McIntyreLA, StewartDJ, MeiSHJ, et al. Cellular immunotherapy for septic shock (CISS): a phase I clinical trial. Am J Respir Crit Care Med. 2018;197(3):337–347.28960096
  • SchlosserK, WangJP, Dos SantosC, et al. Effects of mesenchymal stem cell treatment on systemic cytokine levels in a phase 1 dose escalation safety trial of septic shock patients. Crit Care Med. 2019;47(7):918–925.30720538
  • MollD, Rasmusson-DuprezI, von BahrL, et al. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells. 2012;30:1565–1574. doi:10.1002/stem.111122522999
  • IslamD, HuangY, FenelliV, et al. Identification and modulation of microenvironment is crucial for effective MSC therapy in acute lung injury. Am J Respir Crit Care Med. 2019;199:1214–1224. doi:10.1164/rccm.201802-0356OC30521764
  • PlavaJ, CihovaM, BurikovaM, MatuskovaM, KucerovaL, MiklikovaS. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer. Mol Cancer. 2019;18(1):67. doi:10.1186/s12943-019-0960-z30927930
  • DavereyA, DrainAP, KidambiS. Physical intimacy of breast cancer cells with mesenchymal stem cells elicits Trastuzumab resistance through Src activation. Sci Rep. 2015;5:13744.26345302
  • SuiBD, HuCH, LiuAQ, ZhengCX, XuanK, JinY. Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions. Biomaterials. 2019;196:18–30. doi:10.1016/j.biomaterials.2017.10.04629122279
  • ZhengCX, SuiBD, LiuN, et al. Adipose mesenchymal stem cells from osteoporotic donors preserve functionality and modulate systemic inflammatory microenvironment in osteoporotic cytotherapy. Sci Rep. 2018;8(1):5251.29588504
  • BustosML, HuleihelL, KapetanakiMG, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med. 2014;189(7):787–798. doi:10.1164/rccm.201306-1043OC24559482
  • De BeckerA, Van HummelenP, BakkusM, et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica. 2007;92(4):440–449. doi:10.3324/haematol.1047517488654
  • KarpJM, TeoGSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–216. doi:10.1016/j.stem.2009.02.00119265660
  • AbrahamA, KrasnodembskayaA. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med. 2020;9:28–38.31647191
  • SalomonC, RyanJ, SobreviaL, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 2013;8(7):e68451. doi:10.1371/journal.pone.006845123861904
  • HanJ, LiuY, LiuH, LiY. Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Res Ther. 2019;10:386.31843004
  • ChengZ, OuL, ZhouX, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther. 2008;16(3):571–579. doi:10.1038/sj.mt.630037418253156