408
Views
33
CrossRef citations to date
0
Altmetric
Review

SGLT2 Inhibitors: A Novel Player in the Treatment and Prevention of Diabetic Cardiomyopathy

ORCID Icon &
Pages 4775-4788 | Published online: 06 Nov 2020

References

  • KannelWB, HjortlandM, CastelliWP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34. doi:10.1016/0002-9149(74)90089-74835750
  • RublerS, DlugashJ, YuceogluYZ, KumralT, BranwoodAW, GrishmanA. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602. doi:10.1016/0002-9149(72)90595-44263660
  • JiaG, HillMA, SowersJR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–638. doi:10.1161/CIRCRESAHA.117.31158629449364
  • Abdul-GhaniMA, NortonL, DefronzoRA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–531. doi:10.1210/er.2010-002921606218
  • ZinmanB, WannerC, LachinJM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type2 diabetes. N Engl J Med. 2015;373:2117–2128.26378978
  • NealB, PerkovicV, MahaffeyKW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657.28605608
  • WiviottSD, RazI, BonacaMP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357.30415602
  • PatornoE, PawarA, FranklinJM, et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care: a first analysis from the empagliflozin comparative effectiveness and safety (EMPRISE) study. Circulation. 2019;139(25):2822–2830.30955357
  • GalloLA, WrightEM, VallonV. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12:78–79.25616707
  • ScheenAJ. Cardiovascular effects of new oral glucose-Lowering agents DPP-4 and SGLT-2 inhibitors. Circ Res. 2018;122(10):1439–1459. doi:10.1161/CIRCRESAHA.117.31158829748368
  • McMurrayJJV, SolomonSD, InzucchiSE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.31535829
  • PackerM. Heart failure: the most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care. 2018;41(1):11–13. doi:10.2337/dci17-005229263193
  • PackerM. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors. Eur J Heart Fail. 2020;22(4):618–628. doi:10.1002/ejhf.173232037659
  • PackerM. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19(1):62. doi:10.1186/s12933-020-01041-432404204
  • PackerM. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res. 2020;cvaa064. doi:10.1093/cvr/cvaa064.32243505
  • PackerM. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance. Circulation. 2020;141(25):2095–2105. doi:10.1161/Circulation.119.045561.32164457
  • JiaG, DeMarcoVG, SowersJR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–153. doi:10.1038/nrendo.2015.21626678809
  • RydénL, ArmstrongPW, ClelandJG, et al. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Eur Heart J. 2000;21(23):1967–1978. doi:10.1053/euhj.2000.231111071803
  • ShindlerDM, KostisJB, YusufS, et al. Diabetes mellitus, a predictor of morbidity and mortality in the studies of left ventricular dysfunction (SOLVD) trials and registry. Am J Cardiol. 1996;77(11):1017–1020. doi:10.1016/S0002-9149(97)89163-18644628
  • ThrainsdottirIS, AspelundT, ThorgeirssonG, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care. 2005;28(3):612–616. doi:10.2337/diacare.28.3.61215735197
  • AronowWS, AhnC. Incidence of heart failure in 2737 older persons with and without diabetes mellitus. Chest. 1999;115(3):867–868. doi:10.1378/chest.115.3.86710084505
  • LeeM, GardinJM, LynchJC, et al. Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: the cardiovascular health study. Am Heart J. 1997;133(1):36–43. doi:10.1016/S0002-8703(97)70245-X9006288
  • DevereuxRB, RomanMJ, ParanicasM, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation. 2000;101(19):2271–2276. doi:10.1161/01.CIR.101.19.227110811594
  • BertoniAG, GoffDC Jr, D’AgostinoRB Jr, et al. Diabetic cardiomyopathy and subclinical cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA). Diabetes Care. 2006;29(3):588–594. doi:10.2337/diacare.29.03.06.dc05-150116505511
  • McMurrayJJ, SolomonSD, InzucchiSE, et al. DAPA-HF trial committees and investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. doi:10.1056/NEJMoa191130331535829
  • Fuentes-AntrásJ, PicatosteB, RamírezE, et al. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol. 2015;14(1):17. doi:10.1186/s12933-015-0173-825856422
  • WrightEM, TurkE. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447(5):510–518. doi:10.1007/s00424-003-1202-012748858
  • NortonL, ShannonCE, FourcaudotM, et al. Sodium-glucose cotransporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes Metab. 2017;19(9):1322–1326. doi:10.1111/dom.1300328477418
  • VallonV, PlattKA, CunardR, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–112.20616166
  • LeeYJ, LeeYJ, HanHJ. Regulatory mechanisms of Na (+)/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl. 2007;72:27–35. doi:10.1038/sj.ki.5002383
  • Abdul-GhaniMA, NortonL, DeFronzoRA. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Ren Physiol. 2015;309(11):889–900. doi:10.1152/ajprenal.00267.2015
  • VestriS, OkamotoMM, de FreitasHS, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol. 2001;182(2):105–112. doi:10.1007/s00232-001-0036-y11447502
  • RahmouneH, ThompsonPW, WardJM, SmithCD, HongG, BrownJ. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54(12):3427–3434. doi:10.2337/diabetes.54.12.342716306358
  • TabataiNM, SharmaM, BlumenthalSS, PeteringDH. Enhanced expressions of expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract. 2009;83(1):e27–30. doi:10.1016/j.diabres.2008.11.00319095325
  • VallonV. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015;66(1):255–270. doi:10.1146/annurev-med-051013-11004625341005
  • VallonV, GerasimovaM, RoseMA, et al. SGLT2 inhibition empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306(2):194–204. doi:10.1152/ajprenal.00520.2013
  • ChaoEC, HenryRR. SGLT2 inhibition–a novel strategy for diabetes treatment. Nat Rev Drug Discov. 2010;9(7):551–559. doi:10.1038/nrd318020508640
  • KaplanA, AbidiE, El-YazbiA, EidA, BoozGW, ZoueinFA. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail Rev. 2018;23(3):419–437. doi:10.1007/s10741-017-9665-929322280
  • GremplerR, ThomasL, EckhardtM, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90. doi:10.1111/j.1463-1326.2011.01517.x21985634
  • ByrneNJ, ParajuliN, LevasseurJL, et al. Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Trans Sci. 2017;2(4):347–354. doi:10.1016/j.jacbts.2017.07.003
  • BorghettiG, von LewinskiD, EatonDM, SourijH, HouserSR, WallnerM. Diabetic cardiomyopathy: current and future therapies beyond glycemic control. Front Physiol. 2018;9:1514.30425649
  • ShiX, VermaS, YunJ. Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem. 2017;433(1):97–102. doi:10.1007/s11010-017-3018-928391552
  • ChenJ, WilliamsS, HoS, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010;1(2):57–92. doi:10.1007/s13300-010-0006-422127746
  • VrhovacI, Balen ErorD, KlessenD, et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 2015;467(9):1881–1898.25304002
  • Di FrancoA, CantiniG, TaniA, et al. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target. Int J Cardiol. 2017;15(243):86–90. doi:10.1016/j.ijcard.2017.05.032
  • ShattockMJ, OttoliaM, BersDM, et al. Na+/Ca2+ exchange and Na+/K+ ATPase in the heart. J Physiol. 2015;593(6):1361–1382. doi:10.1113/jphysiol.2014.28231925772291
  • KhoC, LeeA, HajjarRJ. Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy. Nat Rev Cardiol. 2012;9(12):717–733.23090087
  • BersDM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205. doi:10.1038/415198a11805843
  • DespaS, BersDM. Na (+) transport in the normal and failing heart—remember the balance. J Mol Cell Cardiol. 2013;61:2–10.23608603
  • CingolaniHE, EnnisIL. Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation. 2007;115(9):1090–1100.17339567
  • LambertR, SrodulskiS, PengX, MarguliesKB, DespaF, DespaS. Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport. J Am Heart Assoc. 2015;4(9):e002183.26316524
  • BuggerH, AbelED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57(4):660–671.24477973
  • HattoriY, MatsudaN, KimuraJ, et al. Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: implication in Ca2+ overload. J Physiother. 2000;527(Pt 1):85–94.
  • AnzawaR, BernardM, TamareilleS, et al. Intracellular sodium increase and susceptibility to ischaemia in hearts from type 2 diabetic db/db mice. Diabetologia. 2006;49(3):598–606.16425033
  • ChattouS, DiaconoJ, FeuvrayD. Decrease in sodium calcium exchange and calcium currents in diabetic rat ventricular myocytes. Acta Physiol Scand. 1999;166(2):137–144.10383493
  • DarmellahA, BaetzD, PrunierF, TamareilleS, Rucker-MartinC, FeuvrayD. Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the GotoKakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia. 2007;50(6):1335–1344.17429605
  • HansenPS, ClarkeRJ, BuhagiarKA, et al. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes. Am J Physiol Cell Physiol. 2007;292(3):1070–1077.
  • KjeldsenK, BraendgaardH, SideniusP, LarsenJS, NorgaardA. Diabetes decreases Na+-K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat. Diabetes. 1987;36(7):842–848.3034710
  • BayJ, KohlhaasM, MaackC. Intracellular Na+ and cardiac metabolism. J Mol Cell Cardiol. 2013;61:20–27.23727097
  • HamoudaNN, SydorenkoV, QureshiMA, AlkaabiJM, OzM, HowarthFC. Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015;400(12):57–68.25351341
  • BaartscheerA, SchumacherCA, WüstRC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568–573.27752710
  • UthmanL, BaartscheerA, BleijlevensB, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na (+)/H (+) exchanger, lowering of cytosolic Na (+) and vasodilation. Diabetologia. 2018;61(3):722–726.29197997
  • YeY, JiaX, BajajM, BirnbaumY. Dapagliflozin attenuates Na (+)/H (+) exchanger-1 in cardiofibroblasts via AMPK activation. Cardiovasc Drugs Ther. 2018;32(6):553–558.30367338
  • HammoudiN, JeongD, SinghR, et al. Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther. 2017;31:233–246.28643218
  • LiangL, JiangJ, FrankSJ. Insulin receptor substrate-1-mediated enhancement of growth hormone-induced mitogen-activated protein kinase activation. Endocrinology. 2000;141:3328–3336.10965905
  • MoellmannJ, KlinkhammerBM, DrosteP, et al. Empagliflozin improves left ventricular diastolic function of db/db mice. Biochim Biophys Acta Mol Basis Dis. 2020;1866(8):165807.32353614
  • Hernandez-ResendizS, Buelna-ChontalM, CorreaF, ZazuetaC. Targeting mitochondria for cardiac protection. Curr Drug Targets. 2013;14(5):586–600.23458575
  • DuncanJG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta. 2011;1813(7):1351–1359.21256163
  • MontaigneD, MarechalX, CoisneA, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014;130(7):554–564.24928681
  • SciarrettaS, MaejimaY, ZablockiD, SadoshimaJ. The role of autophagy in the heart. Annu Rev Physiol. 2018;80:1–26.29068766
  • MaejimaY, ChenY, IsobeM, GustafssonAB, KitsisRN, SadoshimaJ. Recent progress in research on molecular mechanisms of autophagy in the heart. Am J Physiol Heart Circ Physiol. 2015;308:H259–268.25398984
  • ShirakabeA, ZhaiP, IkedaY, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload induced mitochondrial dysfunction and heart failure. Circulation. 2016;133:1249–1263.26915633
  • DurakA, OlgarY, DegirmenciS, AkkusE, TuncayE, TuranB. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol. 2018;17(1):144.30447687
  • ZhouH, WangS, ZhuP, HuS, ChenY, RenJ. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–346.29306791
  • MizunoM, KunoA, YanoT, et al. Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiol Rep. 2018;6:e13741.29932506
  • ShaoQ, MengL, LeeS, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019;18:165.31779619
  • WangY, ZhaoX, LotzM, TerkeltaubR, Liu-BryanR. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha. Arthritis Rheumatol. 2015;67(8):2141–2153.25940958
  • YanW, ZhangH, LiuP, et al. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1alpha signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol. 2013;108(3):329.23460046
  • SandesaraPB, O’NealWT, KelliHM, et al. The prognostic significance of diabetes and microvascular complications in patients with heart failure with preserved ejection fraction. Diabetes Care. 2018;41:150–155.29051160
  • ShomeJS, PereraD, PleinS, ChiribiriA. Current perspectives in coronary microvascular dysfunction. Microcirculation. 2017;24:e12340.
  • ZhouH, HuS, JinQ, et al. Mff dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. 2017;6(3):e005328.28288978
  • SawadaN, JiangA, TakizawaF, et al. Endothelial PGC-1alpha mediates vascular dysfunction in diabetes. Cell Metab. 2014;19(2):246–258.24506866
  • KatakamPV, WapplerEA, KatzPS, et al. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase, arterioscler. Thromb Vasc Biol. 2013;33(4):752–759.
  • AdingupuDD, GöpelSO, GrönrosJ, et al. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob-/- mice. Cardiovasc Diabetol. 2019;18(1):16.30732594
  • JuniRP, KusterDWD, GoebelM, et al. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. J Am Coll Cardiol Basic Trans Sci. 2019;4:575–591.
  • WrightEM, LooDD, HirayamaBA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794.21527736
  • ZhouL, CryanEV, D’AndreaMR, BelkowskiS, ConwayBR, DemarestKT. Human cardiomyocytes express high level of Naþ/glucose cotransporter 1 (SGLT1). J Cell Biochem. 2003;90:339–346.14505350
  • UthmanL, HomayrA, JuniRP, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–886.31724838
  • AroorAR, MandaviaCH, SowersJR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012;8:609–617.22999243
  • MandaviaCH, PulakatL, DeMarcoV, SowersJR. Over-nutrition and metabolic cardiomyopathy. Metabolism. 2012;61:1205–1210.22465089
  • DhallaNS, LiuX, PanagiaV, TakedaN. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res. 1998;40:239–247.9893715
  • MarciniakSJ, RonD. Endoplasmic reticulum stress signaling in disease. Physiol Rev. 2006;86(4):1133–1149.17015486
  • KusakaH, KoibuchiN, HasegawaY, OgawaH, Kim-MitsuyamaS. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc Diabetol. 2016;15(1):157.27835975
  • LeeTM, ChangNC, LinSZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.28132924
  • TanajakP, Sa-NguanmooP, SivasinprasasnS, et al. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol. 2018;236(2):69–84.29142025
  • LinB, KoibuchiN, HasegawaY, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13(1):148.25344694
  • OlgarY, TuranB. A sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin comparison with insulin shows important effects on Zn2+-transporters in cardiomyocytes from insulin-resistant metabolic syndrome rats through inhibition of oxidative stress. Can J Physiol Pharmacol. 2019;97(6):528–535.30444646
  • AyazM, TuranB. Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol. 2006;290(3):H1071–80.16214842
  • TuncayE, TuranB. Intracellular Zn (2+) increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species. Biol Trace Elem Res. 2016;169(2):294–302.26138011
  • TeshimaY, TakahashiN, NishioS, et al. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J. 2014;78(2):300–306. doi:10.1253/circj.CJ-13-118724334638
  • LiC, ZhangJ, XueM, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15. doi:10.1186/s12933-019-0816-230710997
  • XueM, LiT, WangY, et al. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin Sci. 2019;133(15):1705–1720. doi:10.1042/CS20190585
  • KolijnD, PabelS, TianY, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res. 2020:cvaa123. doi:10.1093/cvr/cvaa123.32396609
  • ZhouY, WuW. The sodium–glucose co-transporter 2 inhibitor, empagliflozin, protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway. Cell Physiol Biochem. 2017;41(6):2503–2512. doi:10.1159/00047594228472796
  • HusseinAM, EidEA, TahaM, et al. Comparative study of the effects of GLP1 analog and SGLT2 inhibitor against diabetic cardiomyopathy in type 2 diabetic rats: possible underlying mechanisms. Biomedicines. 2020;8(3):43. doi:10.3390/biomedicines8030043
  • PalPB, SonowalH, ShuklaK, SrivastavaSK, RamanaKV. Aldose reductase mediates NLRP3 inflammasome-initiated innate immune response in hyperglycemia-induced Thp1 monocytes and male mice. Endocrinology. 2017;158:3661–3675.28938395
  • YeY, BajajM, YangHC, Perez-PoloJR, BirnbaumY. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–132. doi:10.1007/s10557-017-6725-228447181
  • Aragón-HerreraA, Feijóo-BandínS, Otero SantiagoM, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of zucker diabetic fatty rats. Biochem Pharmacol. 2019;170:113677.31647926
  • ChenH, TranD, YangHC, NylanderS, BirnbaumY, YeY. Dapagliflozin and ticagrelor have additive effects on the attenuation of the activation of the NLRP3 inflammasome and the progression of diabetic cardiomyopathy: an AMPK–mTOR interplay. Cardiovasc Drugs Ther. 2020;34(4):443–461. doi:10.1007/s10557-020-06978-y.32335797
  • HabibiJ, AroorAR, SowersJR, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16(1):9. doi:10.1186/s12933-016-0489-z28086951
  • DasS, AibaT, RosenbergM, et al. Pathological role of serum- and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling. Circulation. 2012;126(18):2208–2219. doi:10.1161/CIRCULATIONAHA.112.11559223019294
  • AoyamaT, MatsuiT, NovikovM, ParkJ, HemmingsB, RosenzweigA. Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation. 2005;111(13):1652–1659. doi:10.1161/01.CIR.0000160352.58142.0615795328
  • KangS, VermaS, HassanabadAF, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results. Can J Cardiol. 2020;36(4):543–553. doi:10.1016/j.cjca.2019.08.03331837891
  • JiaG, HabibiJ, DeMarcoVG, et al. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension. 2015;66(6):1159–1167. doi:10.1161/HYPERTENSIONAHA.115.0601526441470
  • CherneyDZ, PerkinsBA, SoleymanlouN, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587–597. doi:10.1161/CIRCULATIONAHA.113.00508124334175
  • TanakaH, TakanoK, IijimaH, et al. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther. 2017;34(2):436–451. doi:10.1007/s12325-016-0457-827981497
  • MuskietMH, van RaalteDH, van BommelEJ, et al. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 2015;3:928–929.26590679
  • FilippatosTD, LiontosA, PapakitsouI, ElisafMS. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Postgrad Med. 2019;131(2):82–88. doi:10.1080/00325481.2019.158197130757937
  • WangJ, ShibayamaY, KoboriH, et al. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5. PLoS One. 2017;12(10):e0185600. doi:10.1371/journal.pone.018560029053707
  • ShinSJ, ChungS, KimSJ, et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One. 2016;11(11):e0165703. doi:10.1371/journal.pone.016570327802313
  • WoodsTC, SatouR, MiyataK, et al. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus. Am J Nephrol. 2019;49(4):331–342. doi:10.1159/00049959730921791
  • KruljacI, ĆaćićM, ĆaćićP, et al. Diabetic ketosis during hyperglycemic crisis is associated with decreased all-cause mortality in patients with type 2 diabetes mellitus. Endocrine. 2017;55(1):139–143. doi:10.1007/s12020-016-1082-727592119
  • PawlakM, BaugéE, LalloyerF, LefebvreP, StaelsB. Ketone body therapy protects from lipotoxicity and acute liver failure upon PPARα deficiency. Mol Endocrinol. 2015;29(8):1134–1143. doi:10.1210/me.2014-138326087172
  • Al JoboriH, DanieleG, AdamsJ, et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes Metab. 2017;19(6):809–813. doi:10.1111/dom.1288128128510
  • FerranniniE, BaldiS, FrascerraS, et al. Shift to fatty substrates utilization in response to sodium glucose co-transporter-2 inhibition in nondiabetic subjects and type 2 diabetic patients. Diabetes. 2016;65(5):1190–1195. doi:10.2337/db15-135626861783
  • VermaS, RawatS, HoKL, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. J Am Coll Cardiol Basic Trans Sci. 2018;3:575–587.
  • NielsenR, MøllerN, GormsenLC, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation. 2019;139(18):2129–2141. doi:10.1161/CIRCULATIONAHA.118.03645930884964
  • TentolourisA, VlachakisP, TzeraviniE, EleftheriadouI, TentolourisN. SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16(16):2965. doi:10.3390/ijerph16162965
  • Aragón-HerreraA, Feijóo-BandínS, Otero SantiagoM, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol. 2019;12(170):113677. doi:10.1016/j.bcp.2019.113677
  • SchulzePC, DrosatosK, GoldbergIJ. Lipid use and misuse by the heart. Circ Res. 2016;118(11):1736–1751. doi:10.1161/CIRCRESAHA.116.30684227230639
  • BakovicM, FilipovicN, HamzicLF, KunacN, ZdrilicE, UljevicMV. Changes in neurofilament 200 and tyrosine hydroxylase expression in the cardiac innervation of diabetic rats during aging. Cardiovasc Pathol. 2018;32:38–43. doi:10.1016/j.carpath.2017.11.00329175663
  • YehyaYM, HusseinAM, EzamK, et al. Blockade of renin angiotensin system ameliorates the cardiac arrhythmias and sympathetic neural remodeling in hearts of type 2 DM rat model. Endocr Metab Immune Disord Drug Targets. 2020;20(3):464–478. doi:10.2174/187153031966619080915092131544705
  • BisognanoJD, WeinbergerHD, BohlmeyerTJ, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol. 2000;32(5):817–830. doi:10.1006/jmcc.2000.112310775486
  • HartGW, HousleyMP, SlawsonC. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–1022.17460662
  • YokoeS, AsahiM, TakedaT, et al. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology. 2010;20(10):1217–1226. doi:10.1093/glycob/cwq07120484118
  • EricksonJR, PereiraL, WangL, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372–376. doi:10.1038/nature1253724077098
  • DucheixS, MagréJ, CariouB, PrieurX. Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front Endocrinol (Lausanne). 2018;9:642. doi:10.3389/fendo.2018.0064230420836
  • JoubertM, JaguB, MontaigneD, et al. The SGLT2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes. 2017;66(4):1030–1040. doi:10.2337/db16-073328052965
  • UthmanL, BaartscheerA, SchumacherCA, et al. Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol. 2018;9:1575. doi:10.3389/fphys.2018.0157530519189