136
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Analgesic and Antiallodynic Effects of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide in a Murine Model of Pain

, , ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 4511-4518 | Published online: 27 Oct 2020

References

  • KeatingL, SmithS. Acute pain in the emergency department: the challenges. Rev Pain. 2011;5(3):13–17. doi:10.1177/20494637110050030426526458
  • MichaelidesA, ZisP. Depression, anxiety, and acute pain: links and management challenges. Postgrad Med. 2019;131(7):438–444. doi:10.1080/00325481.2019.166370531482756
  • HerreroJF, LairdJM, Lopez-GarciaJA. Wind-up of spinal cord neurons and pain sensation: much ado about something? Prog Neurobiol. 2000;61(2):169–203. doi:10.1016/S0301-0082(99)00051-910704997
  • WoolfCJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3):S2–S15. doi:10.1016/j.pain.2010.09.03020961685
  • HarirforooshS, AsgharW, JamaliF. Adverse effects of nonsteroidal anti-inflammatory drugs: an update of gastrointestinal, cardiovascular, and renal complications. J Pharm Pharm Sci. 2013;16(5):821–847. doi:10.18433/J3VW2F24393558
  • RosenblumA, MarschLA, JosephH, PortenoyRK. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp Clin Psychopharmacol. 2008;16(5):405. doi:10.1037/a001362818837637
  • KatulandaP, RanasingheP, JayawardenaR, ConstantineGR, SheriffMR, MatthewsDR. The prevalence, patterns, and predictors of diabetic peripheral neuropathy in a developing country. Diabetol Metab Syndr. 2012;4(1):21. doi:10.1186/1758-5996-4-2122642973
  • TesfayeS, BoultonAJ, DyckPJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–2293. doi:10.2337/dc10-130320876709
  • VincentAM, CalabekB, RobertsL, FeldmanEL. Biology of diabetic neuropathy In: Handbook of Clinical Neurology. Vol. 115 Elsevier; 2013:591–606.23931804
  • SaidG. Diabetic neuropathy—a review. Nat Clin Pract Neurol. 2007;3(6):331–340. doi:10.1038/ncpneuro050417549059
  • KhdourMR. Treatment of diabetic peripheral neuropathy: a review. J Pharm Pharmacol. 2020;72(7):863–872. doi:10.1111/jphp.1324132067247
  • ColpaertF, TarayreJ, KoekW, et al. Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, central analgesia. Neuropharmacol. 2002;43(6):945–958. doi:10.1016/S0028-3908(02)00119-3
  • NadesonR, GoodchildC. Antinociceptive role of 5‐HT1A receptors in rat spinal cord. Br J Anaesth. 2002;88(5):679–684. doi:10.1093/bja/88.5.67912067006
  • CartaF, SupuranCT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013). Expert Opin Ther Pat. 2013;23(6):681–691. doi:10.1517/13543776.2013.78059823488823
  • AggarwalM, KondetiB, McKennaR. Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat. 2013;23(6):717–724. doi:10.1517/13543776.2013.78239423514045
  • AsieduM, OssipovMH, KailaK, PriceTJ. Acetazolamide and midazolam act synergistically to inhibit neuropathic pain. Pain. 2010;148(2):302–308. doi:10.1016/j.pain.2009.11.01520007010
  • KrallN, PrettoF, DecurtinsW, BernardesGJ, SupuranCT, NeriD. A small‐molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew Chem Int Ed. 2014;53(16):4231–4235. doi:10.1002/anie.201310709
  • AsieduMN, MejiaGL, HübnerCA, KailaK, PriceTJ. Inhibition of carbonic anhydrase augments GABAA receptor-mediated analgesia via a spinal mechanism of action. J Pain. 2014;15(4):395–406. doi:10.1016/j.jpain.2014.01.00124412803
  • SupuranCT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother. 2016;16(8):961–968.27211329
  • PotenzieriA, RivaB, RigolioR, et al. Oxaliplatin-induced neuropathy occurs through impairment of haemoglobin proton buffering and is reversed by carbonic anhydrase inhibitors. Pain. 2020;161(2):405–415.31634341
  • al-RashidaM, EjazSA, AliS, et al. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: structure activity relationship and molecular modelling studies. Bioorg Med Chem. 2015;23(10):2435–2444. doi:10.1016/j.bmc.2015.03.05425865133
  • FurmanBL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(1):5.47. 41–45.47. 20. doi:10.1002/0471141755.ph0547s70
  • BiesselsG, BrilV, CalcuttN, et al. Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the EASD (Neurodiab). J Peripher Nerv Syst. 2014;19(2):77–87. doi:10.1111/jns5.1207224934510
  • LikeAA, RossiniAA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976;193(4251):415–417. doi:10.1126/science.180605180605
  • RamabadranK, BansinathM, TurndorfH, PuigMM. Tail immersion test for the evaluation of a nociceptive reaction in mice: methodological considerations. J Pharmacol Methods. 1989;21(1):21–31. doi:10.1016/0160-5402(89)90019-32704245
  • AweE, AdeloyeA, IdowuT, OlajideOA, MakindeJ. Antinociceptive effect of Russelia equisetiformis leave extracts: identification of its active constituents. Phytomedicine. 2008;15(4):301–305. doi:10.1016/j.phymed.2007.03.01217689231
  • ArcioniR, Della RoccaM, RomanòS, RomanoR, PietropaoliP, GasparettoA. Ondansetron inhibits the analgesic effects of tramadol: a possible 5-HT3 spinal receptor involvement in acute pain in humans. Anesth Analg. 2002;94(6):1553–1557. doi:10.1213/00000539-200206000-0003312032025
  • SantosAR, GadottiVM, OliveiraGL, et al. Mechanisms involved in the antinociception caused by agmatine in mice. Neuropharmacol. 2005;48(7):1021–1034. doi:10.1016/j.neuropharm.2005.01.012
  • AmanU, SubhanF, ShahidM, et al. Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioral mechanisms. BMC Complement Altern Med. 2016;16(1):77. doi:10.1186/s12906-016-1048-626912265
  • ChaplanSR, BachF, PogrelJ, ChungJ, YakshT. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63. doi:10.1016/0165-0270(94)90144-97990513
  • PeroJE, RossiMA, LehmanHD, et al. Benzoxazolinone aryl sulfonamides as potent, selective Nav1. 7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg Med Chem Lett. 2017;27(12):2683–2688. doi:10.1016/j.bmcl.2017.04.04028465103
  • PanczykK, GoldaS, WaszkielewiczA, ZelaszczykD, Gunia-KrzyzakA, MaronaH. Serotonergic system and its role in epilepsy and neuropathic pain treatment: a review based on receptor ligands. Curr Pharm Des. 2015;21(13):1723–1740. doi:10.2174/138161282166614112111491725412650
  • FowlerM, CliffordJL, GarzaTH, et al. A rat model of full-thickness thermal injury characterized by thermal hyperalgesia, mechanical allodynia, pronociceptive peptide release, and tramadol analgesia. Burns. 2014;40(4):759–771. doi:10.1016/j.burns.2013.10.01124290856
  • TiwariV, AndersonM, YangF, et al. Peripherally acting μ-opioid receptor agonists attenuate ongoing pain-associated behavior and spontaneous neuronal activity after nerve injury in rats. Anesthesiology. 2018;128(6):1220–1236. doi:10.1097/ALN.000000000000219129601322
  • CooperTE, ChenJ, WiffenPJ, et al. Morphine for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;(5). doi:10.1002/14651858.CD011669.pub2
  • MiottoK, ChoAK, KhalilMA, BlancoK, SasakiJD, RawsonR. Trends in tramadol: pharmacology, metabolism, and misuse. Anesth Analg. 2017;124(1):44–51. doi:10.1213/ANE.000000000000168327861439
  • MurmuaA, KunduaSB, PahariA, et al. Effect of ondansetron on the analgesic efficacy of tramadol used for postoperative analgesia: a randomised controlled study. South Afr J Anaesth Analg. 2015;21(5):16–20.
  • WoodPB. Role of central dopamine in pain and analgesia. Expert Rev Neurother. 2008;8(5):781–797. doi:10.1586/14737175.8.5.78118457535
  • FaramarziG, ZendehdelM, HaghparastA. D1‐and D2‐like dopamine receptors within the nucleus accumbens contribute to stress‐induced analgesia in formalin‐related pain behaviours in rats. Eur J Pain. 2016;20(9):1423–1432. doi:10.1002/ejp.86527271035
  • MegatS, ShiersS, MoyJK, et al. A critical role for dopamine D5 receptors in pain chronicity in male mice. J Neurosci. 2018;38(2):379–397. doi:10.1523/JNEUROSCI.2110-17.201729167404
  • CallaghanBC, ChengHT, StablesCL, SmithAL, FeldmanEL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–534. doi:10.1016/S1474-4422(12)70065-022608666
  • RamosKM, JiangY, SvenssonCI, CalcuttNA. Pathogenesis of spinally mediated hyperalgesia in diabetes. Diabetes. 2007;56(6):1569–1576. doi:10.2337/db06-126917287466
  • DaulhacL, MalletC, CourteixC, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol. 2006;70(4):1246–1254. doi:10.1124/mol.106.02547816868181
  • Pop-BusuiR, BoultonAJ, FeldmanEL, et al. Diabetic neuropathy: a position statement by the American diabetes association. Diabetes Care. 2017;40(1):136–154. doi:10.2337/dc16-204227999003
  • AbbottCA, MalikRA, van RossER, KulkarniJ, BoultonAJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the UK. Diabetes Care. 2011;34(10):2220–2224. doi:10.2337/dc11-110821852677