148
Views
19
CrossRef citations to date
0
Altmetric
Original Research

ISL Induces Apoptosis and Autophagy in Hepatocellular Carcinoma via Downregulation of PI3K/AKT/mTOR Pathway in vivo and in vitro

, , , , , & show all
Pages 4363-4376 | Published online: 20 Oct 2020

References

  • YangJD, HainautP, GoresG, AmadouA, PlymothA, RobertsLR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. doi:10.1038/s41575-019-0186-y31439937
  • AllemaniC, MatsudaT, Di CarloV, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–1075. doi:10.1016/S0140-6736(17)33326-329395269
  • ErstadDJ, TanabeKK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma. Ann Surg Oncol. 2019;26(5):1474–1493. doi:10.1245/s10434-019-07227-930788629
  • YarchoanM, AgarwalP, VillanuevaA, et al. Recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer Res. 2019;79(17):4326–4330. doi:10.1158/0008-5472.CAN-19-080331481419
  • WangC, VegnaS, JinH, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019.
  • ZhuangC, ZhangW, ShengC, ZhangW, XingC, MiaoZ. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017;117(12):7762–7810. doi:10.1021/acs.chemrev.7b0002028488435
  • LorussoV, MarechI. Novel plant-derived target drugs: a step forward from licorice? Expert Opin Ther Targets. 2013;17(4):333–335. doi:10.1517/14728222.2013.77331223425066
  • YangHH, ZhangC, LaiSH, ZengCC, LiuYJ, WangXZ. Isoliquiritigenin induces cytotoxicity in PC-12 cells in vitro. Appl Biochem Biotechnol. 2017;183(4):1173–1190. doi:10.1007/s12010-017-2491-728488118
  • YushanR, YingY, YujunT, et al. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3beta/TNF-alpha pathway. Eur J Pharmacol. 2018;838:11–22.30171855
  • ZhangB, LaiY, LiY, et al. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur J Pharmacol. 2018;821:57–67. doi:10.1016/j.ejphar.2017.12.05329277717
  • JungSK, LeeMH, LimDY, et al. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J Biol Chem. 2014;289(52):35839–35848. doi:10.1074/jbc.M114.58551325368326
  • TianT, SunJ, WangJ, LiuY, LiuH. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncol Lett. 2018;16(5):6133–6139.30344755
  • ZhengH, LiY, WangY, et al. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol Appl Pharmacol. 2014;280(1):10–20. doi:10.1016/j.taap.2014.07.01825094029
  • LiC, ZhouX, SunC, LiuX, ShiX, WuS. Isoliquiritigenin inhibits the proliferation, apoptosis and migration of osteosarcoma cells. Oncol Rep. 2019;41(4):2502–2510.30720124
  • ShiD, YangJ, JiangY, WenL, WangZ, YangB. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med. 2020;152:207–215. doi:10.1016/j.freeradbiomed.2020.03.01632220625
  • CarneiroBA, El-DeiryWS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020.
  • D’ArcyMS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi:10.1002/cbin.1113730958602
  • ZhangH, ChangJT, GuoB, et al. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy. 2015;11(1):9–27.25569839
  • KlionskyDJ. Coming soon to a journal near you—the updated guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2014;10(10):1691. doi:10.4161/auto.3618725208091
  • RavananP, SrikumarIF, TalwarP. Autophagy: the spotlight for cellular stress responses. Life Sci. 2017;188:53–67. doi:10.1016/j.lfs.2017.08.02928866100
  • GalluzziL, GreenDR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177(7):1682–1699. doi:10.1016/j.cell.2019.05.02631199916
  • ZhangY, Kwok-Shing NgP, KucherlapatiM, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31(6):820–832 e823. doi:10.1016/j.ccell.2017.04.01328528867
  • Pan-cancer analysis pinpoints targets in PI3K pathway. Cancer Discov. 2017;7(8):OF6. doi:10.1158/2159-8290.CD-NB2017-092
  • LoRussoPM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 2016;34(31):3803–3815. doi:10.1200/JCO.2014.59.001827621407
  • Bitencourt-FerreiraG, PintroVO, de AzevedoWF Jr. Docking with AutoDock4. Methods Mol Biol. 2019;2053:125–148.31452103
  • MorrisGM, HueyR, LindstromW, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi:10.1002/jcc.2125619399780
  • De ParisR, Vahl QuevedoC, RuizDD, GarganoF, de SouzaON. A selective method for optimizing ensemble docking-based experiments on an InhA fully-flexible receptor model. BMC Bioinform. 2018;19(1):235. doi:10.1186/s12859-018-2222-2
  • Santos-MartinsD, ForliS, RamosMJ, OlsonAJ. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model. 2014;54(8):2371–2379. doi:10.1021/ci500209e24931227
  • LuaRC. PyKnot: a PyMOL tool for the discovery and analysis of knots in proteins. Bioinformatics. 2012;28(15):2069–2071. doi:10.1093/bioinformatics/bts29922611132
  • MarconatoL, SabattiniS, MarisiG, RossiF, LeoneVF, Casadei-GardiniA. Sorafenib for the treatment of unresectable hepatocellular carcinoma: preliminary toxicity and activity data in dogs. Cancers (Basel. 2020;12:5. doi:10.3390/cancers12051272
  • RimassaL, WornsMA. Navigating the new landscape of second-line treatment in advanced hepatocellular carcinoma. Liver Int. 2020;40(8):1800–1811. doi:10.1111/liv.14533
  • WangQ, MoJ, ZhaoC, et al. Raddeanin A suppresses breast cancer-associated osteolysis through inhibiting osteoclasts and breast cancer cells. Cell Death Dis. 2018;9(3):376. doi:10.1038/s41419-018-0417-029515110
  • XieJ, LiuJ, LiuH, et al. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm Sin B. 2015;5(6):554–563. doi:10.1016/j.apsb.2015.07.00826713270
  • MaL, ChenH, DongP, LuX. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013;139(1–4):503–508. doi:10.1016/j.foodchem.2013.01.03023561137
  • OlakuO, WhiteJD. Herbal therapy use by cancer patients: a literature review on case reports. Eur J Cancer. 2011;47(4):508–514. doi:10.1016/j.ejca.2010.11.01821185719
  • FukuchiK, OkudairaN, AdachiK, et al. Antiviral and antitumor activity of licorice root extracts. In Vivo (Brooklyn). 2016;30(6):777–785. doi:10.21873/invivo.10994
  • SunJ, LiuHY, LvCZ, QinJ, WuYF. Modification, antitumor activity, and targeted PPARgamma study of 18beta-glycyrrhetinic acid, an important active ingredient of licorice. J Agric Food Chem. 2019;67(34):9643–9651. doi:10.1021/acs.jafc.9b0344231390199
  • WangL, YangR, YuanB, LiuY, LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B. 2015;5(4):310–315. doi:10.1016/j.apsb.2015.05.00526579460
  • WaldmanAD, FritzJM, LenardoMJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020.
  • Delgado-RamosGM, NasirSS, WangJ, SchwartzbergLS. Real-world evaluation of effectiveness and tolerance of chemotherapy for early-stage breast cancer in older women. Breast Cancer Res Treat. 2020;182(2):247–258. doi:10.1007/s10549-020-05684-532447595
  • NakatogawaH. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020.
  • AmaravadiRK, KimmelmanAC, DebnathJ. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019;9(9):1167–1181.31434711
  • SaikiS, SasazawaY, ImamichiY, et al. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy. 2011;7(2):176–187. doi:10.4161/auto.7.2.1407421081844
  • KumarD, ShankarS, SrivastavaRK. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett. 2014;343(2):179–189. doi:10.1016/j.canlet.2013.10.00324125861
  • YugeK, KikuchiE, HagiwaraM, et al. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther. 2015;14(9):2112–2120. doi:10.1158/1535-7163.MCT-15-014026184482
  • YuJS, CuiW. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–3060. doi:10.1242/dev.13707527578176
  • ChengHW, ChenYF, WongJM, et al. Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway. J Exp Clin Cancer Res. 2017;36(1):27. doi:10.1186/s13046-017-0495-328173828