449
Views
55
CrossRef citations to date
0
Altmetric
Review

Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases

, &
Pages 3731-3746 | Published online: 15 Sep 2020

References

  • Cardiovascular diseases (CVDs): health Topics; Updated 5 2017 Available from:https://www.who.int/cardiovascular_diseases/en/. Accessed 246 2020.
  • WHO library cataloguing-in-publication data: hearts: technical package for cardiovascular disease management in primary health care. Available from:https://www.who.int/cardiovascular_diseases/hearts/Hearts_package.pdf. Accessed 93, 2020.
  • KimBM. The role of Saikosaponins in therapeutic strategies for age-related diseases. Oxid Med Cell Longev. 2018;2018:8275256. doi:10.1155/2018/827525629849917
  • LyuM, WangYF, FanGW, WangXY, XuSY, ZhuY. Balancing herbal medicine and functional food for prevention and treatment of cardiometabolic diseases through modulating gut microbiota. Front Microbiol. 2017;8(1):2146. doi:10.3389/fmicb.2017.0214629167659
  • LiuP, ShanG, ZhangF, ChenJN, JiaTZ. Metabolomics analysis and rapid identification of changes in chemical ingredients in crude and processed Astragali Radix by UPLC-QTOF-MS combined with novel informatics UNIFI platform. Chin J Nat Med. 2018;16(9):714–720. doi:10.1016/S1875-5364(18)30111-030269848
  • MaX, ZhangK, LiH, HanS, MaZ, TuP. Extracts from Astragalus membranaceus limit myocardial cell death and improve cardiac function in a rat model of myocardial ischemia. J Ethnopharmacol. 2013;149(3):720–728. doi:10.1016/j.jep.2013.07.03623968862
  • ZhangL, LingY, WangY, GaoX. Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury. Pharmazie. 2011;66(2):144–150. doi:10.1691/ph.2011.073821434579
  • ZhangK, PuglieseM, PuglieseA, PassantinoA. Biological active ingredients of traditional Chinese herb Astragalus membranaceus on treatment of diabetes: a systematic review. Mini Rev Med Chem. 2015;15(4):315–329. doi:10.2174/138955751566615022711343125723453
  • ZhouR, ChenH, ChenJ, ChenX, WenY, XuL. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement Altern Med. 2018;18(1):83. doi:10.1186/s12906-018-2148-229523109
  • YangB, XiaoB, SunT. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol. 2013;62:287–290. doi:10.1016/j.ijbiomac.2013.09.01624060282
  • IbrahimLF, MarzoukMM, HusseinSR, KawashtySA, MahmoudK, SalehNAM. Flavonoid constituents and biological screening of Astragalus bombycinus Boiss. Nat Prod Res. 2013;27(45):386–393. doi:10.1080/14786419.2012.70121322765022
  • LiX, QuL, DongY, et al. A Review of recent research progress on the Astragalus genus. Molecules. 2014;19(11):18850–18880. doi:10.3390/molecules19111885025407722
  • LiY, LiZ, YanS, SuY. Chemical constituents in roots of Astragalus membranaceus. Chin Tradit Herb Drugs. 2017;48(13):2601–2607. doi:0.7501/j.issn.0253-2670.2017.13.003
  • HirotaniM, ZhouY, LuiH, FuruyaT. Astragalosides from hairy root cultures of Astragalus membranaceus. Phytochemistry. 1994;36(3):665–670. doi:10.1016/S0031-9422(00)89793-9
  • TanC, LiuX, FuZ. Study on the pharmacokinetics of Astragaloside IV in rats. Strait Pharm J. 2013;25(08):40–41.
  • YuJ, ZhangY, ZhangC, HanJ, SunS, WangR. Pharmacokinetics and absolute bioavailability of Astragaloside IV inclusion compound. Chin Pharm J. 2011;46(08):615–618.
  • SunG, ZhaoY, MiaoP, et al. Stability study in biological samples and metabolites analysis of Astragaloside IV in rat intestinal bacteria in vitro. Chin J Chin Mater Med. 2014;39(21):4258–4264. doi:10.4268/cjcmm20142133
  • GuY, WangG, PanG, FawcettJP, A JSJ. Transport and bioavailability studies of Astragaloside IV, an active ingredient in Radix Astragali. Basic Clin Pharmacol Toxicol. 2004;95(6):295–298. doi:10.1111/j.1742-7843.2004.t01-1-pto950508.x15569275
  • QingL, ChenT, SunW, LuoP, ZhangZ, DingL. Pharmacokinetics comparison, intestinal absorption and acute toxicity assessment of a novel water-soluble Astragaloside IV derivative (Astragalosidic Acid, LS-102). Eur J Drug Metab Pharmacokinet. 2019;44(2):251–259. doi:10.1007/s13318-018-0515-530315409
  • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Beijing: China medical science and technology press; 2015:302.
  • LiS, NongY, GaoQ, et al. Astragalus Granule prevents Ca2+ current remodeling in heart failure by the downregulation of CaMKII. Evid Based Complement Alternat Med. 2017;2017:7517358. doi:10.1155/2017/751735828855948
  • ZhangJG, YangN, HeH, et al. Effect of Astragalus injection on plasma levels of apoptosis-related factors in aged patients with chronic heart failure. Chin J Integr Med. 2005;11(3):187–190. doi:10.1007/BF0283650216181532
  • MaJ, PengA, LinS. Mechanisms of the therapeutic effect of Astragalus membranaceus on sodium and water retention in experimental heart failure. Chin Med J. 1998;111(1):17–23.10322646
  • HuJY, HanJ, ChuZG, et al. Astragaloside IV attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels. Clin Exp Pharmacol Physiol. 2009;36(4):351–357. doi:10.1111/j.1440-1681.2008.05059.x18986331
  • ZhouJY, FanY, KongJL, WuDZ, HuZB. Effects of components isolated from Astragalus membranaceus Bunge on cardiac function injured by myocardial ischemia reperfusion in rats. Chin J Chin Mater Med. 2000;25(5):300–302.
  • LuoY, WanQ, XuM, et al. Nutritional preconditioning induced by Astragaloside IV on isolated hearts and cardiomyocytes against myocardial ischemia injury via improving Bcl-2-mediated mitochondrial function. Chem Biol Interact. 2019;309:108723. doi:10.1016/j.cbi.2019.06.03631228469
  • SiJ, WangN, WangH, et al. HIF-1alpha signaling activation by post-ischemia treatment with Astragaloside IV attenuates myocardial ischemia-reperfusion injury. PLoS One. 2014;9(9):e107832. doi:10.1371/journal.pone.010783225238237
  • JiangS, JiaoG, ChenY, HanM, WangX, LiuW. Astragaloside IV attenuates chronic intermittent hypoxia-induced myocardial injury by modulating Ca 2+++ homeostasis. Cell Biochem Funct. 2020;38:710–720. doi:10.1002/cbf.353832306464
  • ZhangDW, BianZP, XuJD, et al. Astragaloside IV alleviates hypoxia/reoxygenation-induced neonatal rat cardiomyocyte injury via the protein kinase a pathway. Pharmacology. 2012;90(12):95–101. doi:10.1159/00033947622797566
  • KasparovaD, NeckarJ, DabrowskaL, et al. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genomics. 2015;47(12):612–620. doi:10.1152/physiolgenomics.00058.201526465708
  • Sharmila QueenthyS, Stanely Mainzen PrinceP, JohnB. Diosmin prevents isoproterenol-induced heart mitochondrial oxidative stress in rats. Cardiovasc Toxicol. 2018;18(2):120–130. doi:10.1007/s12012-017-9422-228819818
  • KolwiczSC Jr, PurohitS, TianR. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–616. doi:10.1161/CIRCRESAHA.113.30209523948585
  • AbrielH, RougierJS, JalifeJ. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res. 2015;116(12):1971–1988. doi:10.1161/CIRCRESAHA.116.30501726044251
  • HuangH, LaiS, WanQ, QiW, LiuJ. Astragaloside IV protects cardiomyocytes from anoxia/reoxygenation injury by upregulating the expression of Hes1 protein. Can J Physiol Pharmacol. 2016;94(5):542–553. doi:10.1139/cjpp-2015-045727070866
  • JiangM, NiJ, CaoY, XingX, WuQ, FanG. Astragaloside IV Attenuates myocardial ischemia-reperfusion injury from oxidative stress by regulating succinate, lysophospholipid metabolism, and ROS scavenging system. Oxid Med Cell Longev. 2019;2019:9137654. doi:10.1155/2019/913765431341538
  • XuD, HuMJ, WangYQ, CuiYL. Antioxidant activities of Quercetin and its complexes for medicinal application. Molecules. 2019;24(6):1123. doi:10.3390/molecules24061123
  • HuJY, HuangYS, SongHP, et al. Protective effects of Astragaloside and Quercetin on rat myocardial cells after hypoxia. Chin J Burns. 2007;23(3):175–178.
  • TuL, PanCS, WeiXH, et al. Astragaloside IV protects heart from ischemia and reperfusion injury via energy regulation mechanisms. Microcirculation. 2013;20(8):736–747. doi:10.1111/micc.1207423809007
  • DuttaAK, SabirovRZ, UramotoH, OkadaY. Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. J Physiol. 2004;559(Pt 3):799–812. doi:10.1113/jphysiol.2004.06924515272030
  • YangJ, ZhangX, MaX, et al. Astragaloside IV enhances GATA-4 mediated myocardial protection effect in hypoxia/reoxygenation injured H9c2 cells. Nutr Metab Cardiovasc Dis. 2020;30(5):829–842. doi:10.1016/j.numecd.2020.01.00932278611
  • SeverinoP, D’AmatoA, PucciM, et al. Ischemic heart disease and heart failure: role of coronary ion channels. Int J Mol Sci. 2020;21(9):3167. doi:10.3390/ijms21093167
  • BertiC, ZsolnayV, ShannonTR, FillM, GillespieD. Sarcoplasmic reticulum Ca2+, Mg2+, K+, and Cl− concentrations adjust quickly as heart rate changes. J Mol Cell Cardiol. 2017;103:31–39. doi:10.1016/j.yjmcc.2016.10.01827914790
  • XuXL, ChenXJ, JiH, et al. Astragaloside IV improved intracellular calcium handling in hypoxia-reoxygenated cardiomyocytes via the sarcoplasmic reticulum Ca-ATPase. Pharmacology. 2008;81(4):325–332. doi:10.1159/00012133518349554
  • YinB, HouXW, LuML. Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin. 2019;40(5):599–607. doi:10.1038/s41401-018-0082-y30030530
  • WuY, FanZ, ChenZ, et al. Astragaloside IV protects human cardiomyocytes from hypoxia/reoxygenation injury by regulating miR-101a. Mol Cell Biochem. 2020;470(12):41–51. doi:10.1007/s11010-020-03743-532394311
  • YangP, ZhouYP, ChangXC, WangF, LiGW. Astragaloside IV regulates Nrf2/Bach1/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation. Chin J Chin Mater Med. 2019;44(11):2331–2337. doi:10.19540/j.cnki.cjcmm.20190312.001
  • YangP, ZhouY, XiaQ, YaoL, ChangX. Astragaloside IV regulates the PI3K/Akt/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation. Biol Pharm Bull. 2019;42(5):721–727. doi:10.1248/bpb.b18-0085430867343
  • WeiD, XuH, GaiX, JiangY. Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways. Acta Cir Bras. 2019;34(7):e201900708. doi:10.1590/s0102-86502019007000000831531541
  • DuJ, LiuJ, ZhenJ, YangST, ZhengEL, LengJY. Astragaloside IV protects cardiomyocytes from hypoxia-induced injury by down-regulation of lncRNA GAS5. Biomed Pharmacother. 2019;116:109028. doi:10.1016/j.biopha.2019.10902831136949
  • GongL, ChangH, ZhangJ, GuoG, ShiJ, XuH. Astragaloside IV protects rat cardiomyocytes from hypoxia-induced injury by down-regulation of miR-23a and miR-92a. Cell Physiol Biochem. 2018;49(6):2240–2253. doi:10.1159/00049382730257251
  • YuJ, ZhangX, ZhangY. Astragaloside attenuates myocardial injury in a rat model of acute myocardial infarction by upregulating hypoxia inducible factor1alpha and Notch1/Jagged1 signaling. Mol Med Rep. 2017;15(6):4015–4020. doi:10.3892/mmr.2017.652228487976
  • LuM, TangF, ZhangJ, et al. Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-kappaB signaling pathway. Phytother Res. 2015;29(4):599–606. doi:10.1002/ptr.529725604645
  • NakamuraM, SadoshimaJ. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407. doi:10.1038/s41569-018-0007-y29674714
  • DengKQ, ZhaoGN, WangZ, et al. Targeting transmembrane BAX inhibitor motif containing 1 alleviates pathological cardiac hypertrophy. Circulation. 2018;137(14):1486–1504. doi:10.1161/CIRCULATIONAHA.117.03165929229612
  • YuanJ, LiuH, GaoW, et al. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics. 2018;8(9):2565–2582. doi:10.7150/thno.2287829721099
  • TangB, ZhangJG, TanHY, WeiXQ. Astragaloside IV inhibits ventricular remodeling and improves fatty acid utilization in rats with chronic heart failure. Biosci Rep. 2018;38(3):BSR20171036. doi:10.1042/BSR2017103629301869
  • LuM, LengB, HeX, ZhangZ, WangH, TangF. Calcium sensing receptor-related pathway contributes to cardiac injury and the mechanism of Astragaloside IV on cardioprotection. Front Pharmacol. 2018;9:1163. doi:10.3389/fphar.2018.0116330364197
  • LiuZH, LiuHB, WangJ. Astragaloside IV protects against the pathological cardiac hypertrophy in mice. Biomed Pharmacother. 2018;97:1468–1478. doi:10.1016/j.biopha.2017.09.09229793309
  • ChenY, ChenJ, GaoJ, ChaiYH, LiW, QinZ. Effect of astragaloside on vitamin D-receptor expression after endothelin-1-induced cardiomyocyte injury. Afr J Tradit Complement Altern Med. 2017;14(4):278–288. doi:10.21010/ajtcam.v14i4.31
  • ZhangS, TangF, YangY, et al. Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-kappaB/PGC-1alpha signaling mediated energy biosynthesis. PLoS One. 2015;10(3):e0118759. doi:10.1371/journal.pone.011875925738576
  • NieP, MengF, ZhangJ, WeiX, ShenC. Astragaloside IV exerts a myocardial protective effect against cardiac hypertrophy in rats, partially via activating the Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2019;2019:4625912. doi:10.1155/2019/462591231285785
  • MeiM, TangF, LuM, et al. Astragaloside IV attenuates apoptosis of hypertrophic cardiomyocyte through inhibiting oxidative stress and calpain-1 activation. Environ Toxicol Pharmacol. 2015;40(3):764–773. doi:10.1016/j.etap.2015.09.00726433482
  • LuM, WangH, WangJ, et al. Astragaloside IV protects against cardiac hypertrophy via inhibiting the Ca2+/CaN signaling pathway. Planta Med. 2014;80(1):63–69. doi:10.1055/s-0033-136012924338553
  • YangJ, WangHX, ZhangYJ, et al. Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-κB signaling pathway in isoproterenol-induced myocardial hypertrophy. J Ethnopharmacol. 2013;150(3):1062–1070. doi:10.1016/j.jep.2013.10.01724432369
  • LiuT, YangF, LiuJ, et al. Astragaloside IV reduces cardiomyocyte apoptosis in a murine model of coxsackievirus B3-induced viral myocarditis. Exp Anim. 2019;68(4):549–558. doi:10.1538/expanim.19-003731243190
  • ChenP, XieY, ShenE, et al. Astragaloside IV attenuates myocardial fibrosis by inhibiting TGF-beta1 signaling in coxsackievirus B3-induced cardiomyopathy. Eur J Pharmacol. 2011;658(23):168–174. doi:10.1016/j.ejphar.2011.02.04021371462
  • ZhangZC, LiSJ, YangYZ. Effect of astragaloside on myocardial fibrosis in chronic myocarditis. Chin J Integrat Chin West Med. 2007;27(8):728–731.
  • WanY, XuL, WangY, TuerdiN, YeM, QiR. Preventive effects of Astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol. 2018;833:545–554. doi:10.1016/j.ejphar.2018.06.01629913124
  • LuJ, WangQY, ZhouY, et al. Astragaloside IV against cardiac fibrosis by inhibiting TRPM7 channel. Phytomedicine. 2017;30:10–17. doi:10.1016/j.phymed.2017.04.00228545665
  • WeiY, WuY, FengK, et al. Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol. 2020;249:112404. doi:10.1016/j.jep.2019.11240431739105
  • JiaG, LengB, WangH, DaiH. Inhibition of cardiotrophin1 overexpression is involved in the antifibrotic effect of Astragaloside IV. Mol Med Rep. 2017;16(6):8365–8370. doi:10.3892/mmr.2017.767628990065
  • DaiH, JiaG, LuM, LiangC, WangY, WangH. Astragaloside IV inhibits isoprenaline-induced cardiac fibrosis by targeting the reactive oxygen species/mitogen-activated protein kinase signaling axis. Mol Med Rep. 2017;15(4):1765–1770. doi:10.3892/mmr.2017.622028260010
  • LiJS, ZhuXY, LuML, GaoJH, WangHX, YuXC. Effect of combined intervention of electroacupuncture and Astragaloside IV on myocardial hypertrophy and TGF-beta 1/Smad signaling in rats with myocardial fibrosis. Acupunct Res. 2017;42(6):477–481. doi:10.13702/j.1000-0607.2017.06.002
  • ZhaoM, SunX, LianW, et al. Effects of Astragaloside IV on L-type calcium current and intracellular calcium concentration in cardiac myocytes. Chin Pharm Bull. 2013;29(10):1373–1377. doi:10.3969/j.issn.1001-1978.2013.10.011
  • ZhangC, LiuR, LiH, WangJ, ChenH, ZhangWD. Effect of Astragaloside IV on gene expression profile of rat myocardium. Chin J Chin Mater Med. 2008;33(02):172–175.
  • JiY, WangT, ZhangX, et al. Astragalosides increase the cardiac diastolic function and regulate the “Calcium sensing receptor-protein kinase C-protein phosphatase 1” pathway in rats with heart failure. Biomed Pharmacother. 2018;103:838–843. doi:10.1016/j.biopha.2018.04.11129710499
  • ZhaoMM, LianWW, LiZ, et al. Astragaloside IV inhibits membrane Ca2+ current but enhances sarcoplasmic reticulum Ca2+ release. Am J Chin Med. 2017;45(4):863–877. doi:10.1142/s0192415x1750046x28595501
  • LuoW, ChenX, HaoC, WangWT, ZhaoZY. Mechanisms of Astragaloside IV derivative on chronic heart failure. Drug Eval Res. 2011;34(06):416–420.
  • LinX, WangQ, SunS, et al. Astragaloside IV promotes the eNOS/NO/cGMP pathway and improves left ventricular diastolic function in rats with metabolic syndrome. J Int Med Res. 2020;48(1):300060519826848. doi:10.1177/030006051982684830843445
  • ZhongF, ZhouWH, ZhangJ, et al. Effects of Astragaloside on adriamycin-induced myocardium injury and the Daxx expression in rats. J Hunan Univ Chin Med. 2013;33(03):27–30.
  • WangY, MaY, GaoJH, et al. Effects of Astragalus extract mixture and its effective components on the cardiac function in the rats with experimental heart failure induced by adriamycin. Chin J Exper Tradit Med Form. 2012;18(07):208–212. doi:10.13422/j.cnki.syfjx.2012.07.068
  • LiZP, CaoQ. Effects of Astragaloside IV on myocardial calcium transport and cardiac function in ischemic rats. Acta Pharmacol Sin. 2002;23(10):898–904.12370095
  • XuC, TangF, LuM, et al. Astragaloside IV improves the isoproterenol-induced vascular dysfunction via attenuating eNOS uncoupling-mediated oxidative stress and inhibiting ROS-NF-kappaB pathways. Int Immunopharmacol. 2016;33:119–127. doi:10.1016/j.intimp.2016.02.00926903414
  • NieQ, ZhuL, ZhangL, LengB, WangH. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress and Calpain-1 activation. Life Sci. 2019;232:116662. doi:10.1016/j.lfs.2019.11666231323271
  • LengB, TangF, LuM, ZhangZ, WangH, ZhangY. Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sci. 2018;209:111–121. doi:10.1016/j.lfs.2018.07.05330081006
  • ZhangN, WangXH, MaoSL, ZhaoF. Astragaloside IV improves metabolic syndrome and endothelium dysfunction in fructose-fed rats. Molecules. 2011;16(5):3896–3907. doi:10.3390/molecules1605389621555978
  • QiuLH, XieXJ, ZhangBQ. Astragaloside IV improves homocysteine-induced acute phase endothelial dysfunction via antioxidation. Biol Pharm Bull. 2010;33(4):641–646. doi:10.1248/bpb.33.64120410599
  • SuiYB, WangY, LiuL, LiuF, ZhangYQ. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm Biol. 2019;57(1):48–54. doi:10.1080/13880209.2019.156969730905241
  • YuJM, ZhangXB, JiangW, WangHD, ZhangYN. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction. Mol Med Rep. 2015;12(5):6718–6726. doi:10.3892/mmr.2015.430726352430
  • ChengS, ZhangX, FengQ, et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci. 2019;227:82–93. doi:10.1016/j.lfs.2019.04.04031004658
  • YangL, LiuN, ZhaoW, et al. Angiogenic function of Astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp Ther Med. 2019;17(4):2511–2518. doi:10.3892/etm.2019.727330906439
  • LiZ, ZhangS, CaoL, et al. Tanshinone IIA and Astragaloside IV promote the angiogenesis of mesenchymal stem cell-derived endothelial cell-like cells via upregulation of Cx37, Cx40 and Cx43. Exp Ther Med. 2018;15(2):1847–1854. doi:10.3892/etm.2017.563629434774
  • WangH, ZhangY, XiaT, et al. Synergistic promotion of blood vessel regeneration by Astragaloside IV and ferulic acid from electrospun fibrous mats. Mol Pharm. 2013;10(6):2394–2403. doi:10.1021/mp400031y23651405
  • YuY, LiZ, GuoR, et al. Ononin, sec-O-β-d-glucosylhamaudol and Astragaloside I: antiviral lead compounds identified via high throughput screening and biological validation from traditional Chinese medicine Zhongjing formulary. Pharmacol Res. 2019;145:104248. doi:10.1016/j.phrs.2019.04.03231082475
  • ZhangY, ZhuH, HuangC, et al. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J Cardiovasc Pharmacol. 2006;47(2):190–195. doi:10.1097/01.fjc.0000199683.43448.6416495755
  • ZhuangZ, WangZH, DengLH, ZhengQ, ZhengGQ, WangY. Astragaloside IV exerts cardioprotection in animal models of viral myocarditis: a preclinical systematic review and meta-analysis. Front Pharmacol. 2019;10:1388. doi:10.3389/fphar.2019.0138831849654
  • ShangL, QuZ, SunL, et al. Astragaloside IV inhibits adenovirus replication and apoptosis in A549 cells in vitro. J Pharm Pharmacol. 2011;63(5):688–694. doi:10.1111/j.2042-7158.2011.01258.x21492171
  • QiFH, WangZX, CaiPP, et al. Traditional Chinese medicine and related active compounds: a review of their role on hepatitis B virus infection. Drug Discov Ther. 2013;7(6):212–224. doi:10.5582/ddt.2013.v7.6.21224423652
  • MiaoM, LiuJ, WangT, LiangX, BaiM. The effect of different proportions of astragaloside and curcumin on DM model of mice. Saudi Pharm J. 2017;25(4):477–481. doi:10.1016/j.jsps.2017.04.00928579878
  • ZhangR, ZhangX, XingB, et al. Astragaloside IV attenuates gestational diabetes mellitus via targeting NLRP3 inflammasome in genetic mice. Reprod Biol Endocrinol. 2019;17(1):77. doi:10.1186/s12958-019-0522-731558153
  • ChenJ, ChenY, LuoY, GuiD, HuangJ, HeD. Astragaloside IV ameliorates diabetic nephropathy involving protection of podocytes in streptozotocin induced diabetic rats. Eur J Pharmacol. 2014;736:86–94. doi:10.1016/j.ejphar.2014.04.03724809932
  • ZhangZ, WangJ, ZhuY, ZhangH, WangH. Astragaloside IV alleviates myocardial damage induced by type 2 diabetes via improving energy metabolism. Mol Med Rep. 2019;20(5):4612–4622. doi:10.3892/mmr.2019.1071631702040
  • ZhuY, QianX, LiJ, et al. Astragaloside-IV protects H9C2 (2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):4172–4181. doi:10.1080/21691401.2019.168749231713440
  • WangZ, ZhuY, ZhangY, et al. Protective effects of AS-IV on diabetic cardiomyopathy by improving myocardial lipid metabolism in rat models of T2DM. Biomed Pharmacother. 2020;127:110081. doi:10.1016/j.biopha.2020.11008132244194
  • QinH, LiuP, LinS. Effects of Astragaloside IV on the SDF-1/CXCR4 expression in atherosclerosis of apoE (-/-) mice induced by hyperlipaemia. Evid Based Complement Alternat Med. 2015;2015:385154. doi:10.1155/2015/38515426074989
  • ShahzadM, ShabbirA, WojcikowskiK, WohlmuthH, GobeGC. The antioxidant effects of Radix Astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr Drug Targets. 2016;17(12):1331–1340. doi:10.2174/138945011666615090710474226343107
  • LiS, SunY, HuangJ, et al. Anti-tumor effects and mechanisms of Astragalus membranaceus (AM) and its specific immunopotentiation: status and prospect. J Ethnopharmacol. 2020;258:112797. doi:10.1016/j.jep.2020.11279732243990
  • FuJ, WangZ, HuangL, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res. 2014;28(9):1275–1283. doi:10.1002/ptr.518825087616
  • YiZ, LiH. Effects of Astragalus injection on hemorheology, immune function and blood lipid metabolism in patients with angina pectoris of coronary heart disease. Lab Med Clin. 2020;17(12):1681–1683+1687. doi:10.3969/j.issn.1672-9455.2020.12.014
  • NiuF, ZhuL, YangH. Effects of Astragalus injection combined with taurine on immune function of patients with acute viral myocarditis. World Chin Med. 2019;14(05):1242–1245+1250. doi:10.3969/j.issn.1673-7202.2019.05.038
  • QiG, GaoJ. Effect of Huangqi injection on miR in patients with viral myocarditis and the influence of Treg/Th17 cytokines. J Chin Med Mater. 2019;42(04):924–927. doi:10.13863/j.issn1001-4454.2019.04.046
  • LiangT, ZhangY, YinS, et al. Cardio-protecteffect of Qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction. Am J Transl Res. 2016;8(5):2047–2058.27347313
  • DaiQ, ShiZ, HuJ, et al. Meta-analysis of effect of Qishen Yiqi Dripping Pills combined with Western medicine on adverse cardiac events and quality of life after percutaneous coronary intervention. Chin J Chin Mater Med. 2020. doi:10.19540/j.cnki.cjcmm.20200618.501
  • WangJ, ZhaoT, LiJ, et al. Overview on the clinical efficacy and action mechanism of Naoxintong capsules in the treatment of coronary heart disease. J Tradit Chin Med. 2020;61(09):814–817. doi:10.13288/j.11-2166/r.2020.09.019
  • LiuH. Interpretation of consensus of experts on clinical application of Yangxinshi tablets in treatment of coronary heart disease. World Chin Med. 2020;15(04):637–642. doi:10.3969/j.issn.1673-7202.2020.04.034
  • SunX. Clinical study on Buxinqi oral liquid combined with nicorandil in treatment of angina pectoris of coronary heart disease. Drugs Clin. 2019;34(03):640–643. doi:10.7501/j.issn.1674-5515.2019.03.013
  • ZhangY. Analysis of the effect of Xintong oral liquid on unstable angina pectoris of coronary heart disease. Modern J Integr Tradit Chin West Med. 2015;24(31):3473–3475. doi:10.3969/j.issn.1008-8849.2015.31.019