98
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Alprostadil Injection Attenuates Coronary Microembolization-Induced Myocardial Injury Through GSK-3β/Nrf2/HO-1 Signaling-Mediated Apoptosis Inhibition

, , , &
Pages 4407-4422 | Published online: 22 Oct 2020

References

  • HeuschG, SkyschallyA, KleinbongardP. Coronary microembolization and microvascular dysfunction. Int J Cardiol. 2018;258:17–23. doi:10.1016/j.ijcard.2018.02.01029429637
  • HeuschG. The coronary circulation as a target of cardioprotection. Circ Res. 2016;118(10):1643–1658. doi:10.1161/CIRCRESAHA.116.30864027174955
  • JaffeR, CharronT, PuleyG, et al. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation. 2008;117(24):3152–3156. doi:10.1161/CIRCULATIONAHA.107.74231218559715
  • FerrariR, BallaC, MalagùM, et al. Reperfusion damage-a story of success, failure, and hope. Circ J. 2017;81(2):131–141. doi:10.1253/circj.CJ-16-112427941300
  • BologneseL, CarrabbaN, ParodiG, et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation. 2004;109(9):1121–1126. doi:10.1161/01.CIR.0000118496.44135.A714967718
  • LiuYC, LiL, SuQ, et al. Trimetazidine pretreatment inhibits myocardial apoptosis and improves cardiac function in a Swine model of coronary microembolization. Cardiology. 2015;130(2):130–136. doi:10.1159/00036924625612843
  • ZhuHH, WangXT, SunYH, et al. MicroRNA-486-5p targeting PTEN protects against coronary microembolization-induced cardiomyocyte apoptosis in rats by activating the PI3K/AKT pathway. Eur J Pharmacol. 2019;855:244–251. doi:10.1016/j.ejphar.2019.03.04531075240
  • JuhaszovaM, ZorovDB, YanivY, et al. Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 2009;104(11):1240–1252. doi:10.1161/CIRCRESAHA.109.19799619498210
  • FrameS, CohenP, BiondiRM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 2001;7(6):1321–1327. doi:10.1016/S1097-2765(01)00253-211430833
  • AlamJ, StewartD, TouchardC, et al. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999;274(37):26071–26078. doi:10.1074/jbc.274.37.2607110473555
  • LiY, PaonessaJD, ZhangY. Mechanism of chemical activation of Nrf2. PLoS One. 2012;7(4):e35122. doi:10.1371/journal.pone.003512222558124
  • HayesJD, ChowdhryS, Dinkova-KostovaAT, SutherlandC. Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem Soc Trans. 2015;43(4):611–620. doi:10.1042/BST2015001126551701
  • NitureSK, KhatriR, JaiswalAK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014;66:36‐44. doi:10.1016/j.freeradbiomed.2013.02.008
  • KaraH, OzerA, ArpaciH, et al. Effect of alprostadil on erythrocyte deformability in ischemia reperfusion injury. Bratisl Lek Listy. 2015;116(8):509‐511.
  • SoaresBL, FreitasMA, MonteroEF, et al. Alprostadil attenuates inflammatory aspects and leucocytes adhesion on renal ischemia and reperfusion injury in rats. Acta Cir Bras. 2014;29(Suppl 2):55–60. doi:10.1590/S0102-8650201400140011
  • HsiehCC, HsiehSC, ChiuJH, WuYL. Protective effects of N-acetylcysteine and a prostaglandin E1 analog, alprostadil, against hepatic ischemia: reperfusion injury in rats. J Tradit Complement Med. 2014;4(1):64–71. doi:10.4103/2225-4110.12435124872935
  • ErerD, ÖzerA, DemirtaşH, et al. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia-reperfusion injury in rats. Drug Des Devel Ther. 2016;10:2651–2658.
  • LiJH, YangP, LiAL, et al. Cardioprotective effect of liposomal prostaglandin E1 on a porcine model of myocardial infarction reperfusion no-reflow. J Zhejiang Univ Sci B. 2011;12(8):638–643. doi:10.1631/jzus.B110100721796804
  • ShengX, DingS, GeH, et al. Intracoronary infusion of alprostadil and nitroglycerin with targeted perfusion microcatheter in STEMI patients with coronary slow flow phenomenon. Int J Cardiol. 2018;265:6–11. doi:10.1016/j.ijcard.2018.04.11929728334
  • ZhangL, ZhangY, YuX, et al. Alprostadil attenuates myocardial ischemia/reperfusion injury by promoting antioxidant activity and eNOS activation in rats. Acta Cir Bras. 2018;33(12):1067–1077. doi:10.1590/s0102-86502018012000000430624512
  • ZhouZC. A course in toxicology. Peking University Medical Press; 2006.
  • SuQ, LiL, SunY, YangH, YeZ, ZhaoJ. Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem. 2018;47(4):1497–1508. doi:10.1159/00049086629940584
  • SuQ, LvX, SunY, et al. Role of TLR4/MyD88/NF-κB signaling pathway in coronary microembolization-induced myocardial injury prevented and treated with nicorandil. Biomed Pharmacother. 2018;106:776–784. doi:10.1016/j.biopha.2018.07.01429990871
  • SuQ, LvX, YeZ, et al. The mechanism of miR-142-3p in coronary microembolization-induced myocardiac injury via regulating target gene IRAK-1. Cell Death Dis. 2019;10(2):61. doi:10.1038/s41419-019-1341-730683933
  • BarthE, StämmlerG, SpeiserB, SchaperJ. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24(7):669–681. doi:10.1016/0022-2828(92)93381-S1404407
  • BoymanL, KarbowskiM, LedererWJ. Regulation of mitochondrial ATP production: Ca2+ signaling and quality control. Trends Mol Med. 2020;26(1):21–39. doi:10.1016/j.molmed.2019.10.00731767352
  • FangY, ZhaoY, HeS, et al. Overexpression of FGF19 alleviates hypoxia/reoxygenation-induced injury of cardiomyocytes by regulating GSK-3β/Nrf2/ARE signaling. Biochem Biophys Res Commun. 2018;503(4):2355–2362. doi:10.1016/j.bbrc.2018.06.16129964017
  • ZhuH, DingY, XuX, et al. Prostaglandin E1 protects coronary microvascular function via the glycogen synthase kinase 3β-mitochondrial permeability transition pore pathway in rat hearts subjected to sodium laurate-induced coronary microembolization. Am J Transl Res. 2017;9(5):2520–2534.28560002
  • HerrmannJ. Peri-procedural myocardial injury: 2005 update. Eur Heart J. 2005;26(23):2493–2519. doi:10.1093/eurheartj/ehi45516176941
  • HildebrandtHA, KahlertP, BaarsT, et al. Is there a need for distal protection during native vessel percutaneous coronary intervention in patients with stable coronary artery disease? J Cardiovasc Med (Hagerstown). 2014;15(2):170–172. doi:10.2459/JCM.0b013e328361935123846674
  • GeJ, SchäferA, ErtlG, NordbeckP. Thrombus aspiration for ST-segment-elevation myocardial infarction in modern era: still an issue of debate? Circ Cardiovasc Interv. 2017;10(10):e005739. doi:10.1161/CIRCINTERVENTIONS.117.00573929042400
  • WeiLY, FuXH, LiW, et al. Effect of intravenous administration of liposomal prostaglandin E1 on microcirculation in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Chin Med J (Engl). 2015;128(9):1147–1150. doi:10.4103/0366-6999.15607825947394
  • FanY, JiangY, FuX, et al. Effects of liposomal prostaglandin E1 on periprocedural myocardial injury in patients with unstable angina undergoing an elective percutaneous coronary intervention. Coron Artery Dis. 2015;26(8):671–677. doi:10.1097/MCA.000000000000029426267747
  • MehrabiMR, SerbecicN, TamaddonF, et al. Clinical benefit of prostaglandin E1-treatment of patients with ischemic heart disease: stimulation of therapeutic angiogenesis in vital and infarcted myocardium. Biomed Pharmacother. 2003;57(3–4):173–178.12818480
  • FeldS, LiG, AmirianJ, et al. Enhanced thrombolysis, reduced coronary reocclusion and limitation of infarct size with liposomal prostaglandin E1 in a canine thrombolysis model. J Am Coll Cardiol. 1994;24(5):1382–1390. doi:10.1016/0735-1097(94)90124-47930264
  • GustafssonAB, GottliebRA. Mechanisms of apoptosis in the heart. J Clin Immunol. 2003;23(6):447‐459. doi:10.1023/B:JOCI.0000010421.56035.60
  • AdamsJM, CoryS. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281(5381):1322‐1326. doi:10.1126/science.281.5381.1322
  • ChengEH, WeiMC, WeilerS, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8(3):705‐711. doi:10.1016/S1097-2765(01)00320-3
  • SuQ, LvX, YeZ. Ligustrazine attenuates myocardial injury induced by coronary microembolization in rats by activating the PI3K/Akt pathway. Oxid Med Cell Longev. 2019;2019:6791457. doi:10.1155/2019/679145731191802
  • ÖveyİS, NaziroğluM. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience. 2015;284:225–233. doi:10.1016/j.neuroscience.2014.09.07825305668
  • SutherlandC, LeightonIA, CohenP. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signaling. Biochem J. 1993;296(Pt 1):15–19. doi:10.1042/bj29600158250835
  • GuoY, GupteM, UmbarkarP, et al. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol. 2017;110:109–120. doi:10.1016/j.yjmcc.2017.07.01128756206
  • RojoAI, Medina-CamposON, RadaP, et al. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: role of glycogen synthase kinase-3. Free Radic Biol Med. 2012;52(2):473–487. doi:10.1016/j.freeradbiomed.2011.11.00322142471
  • JinA, LiB, LiW, XiaoD. PHLPP2 downregulation protects cardiomyocytes against hypoxia-induced injury through reinforcing Nrf2/ARE antioxidant signaling. Chem Biol Interact. 2019;314:108848. doi:10.1016/j.cbi.2019.10884831610156
  • HolmströmKM, BairdL, ZhangY, et al. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open. 2013;2(8):761–770. doi:10.1242/bio.2013485323951401
  • GrecoT, ShaferJ, FiskumG. Sulforaphane inhibits mitochondrial permeability transition and oxidative stress. Free Radic Biol Med. 2011;51(12):2164–2171. doi:10.1016/j.freeradbiomed.2011.09.01721986339
  • ZhuH, JiaZ, StroblJS, et al. Potent induction of total cellular and mitochondrial antioxidants and phase 2 enzymes by cruciferous sulforaphane in rat aortic smooth muscle cells: cytoprotection against oxidative and electrophilic stress. Cardiovasc Toxicol. 2008;8(3):115–125. doi:10.1007/s12012-008-9020-418607771
  • Dinkova-KostovaAT, AbramovAY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88(PtB):179–188. . doi:10.1016/j.freeradbiomed.2015.04.03625975984