155
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Stoichiometrically Governed Curcumin Solid Dispersion and Its Cytotoxic Evaluation on Colorectal Adenocarcinoma Cells

, ORCID Icon, , &
Pages 4639-4658 | Published online: 02 Nov 2020

References

  • NurgaliK, JagoeRT, AbaloR. Editorial: adverse Effects of Cancer Chemotherapy: anything New to Improve Tolerance and Reduce Sequelae? Front Pharmacol. 2018;9:245. doi:10.3389/fphar.2018.0024529623040
  • AkramM, Shahab-UddinAA, UsmanghaniK, HannanA, MohiuddinE, AsifM. Curcuma longa and curcumin: a review article. Rom J Biol -Plant Biol. 2010;55:65–70.
  • SachinSK, KailashCS, GyanaR. High Performance Thin Layer Chromatography Fingerprint Profile of Rhizome Extracts of Five Important Curcuma Species. Proc Natl Acad Sci India Sect B Biol Sci. 2016;87:4. doi:10.1007/s40011-016-0709-z
  • ParkJ. Anti-carcinogenic properties of curcumin on colorectal cancer. World J Gastrointest Oncol. 2010;2(4):169–176. doi:10.4251/wjgo.v2.i4.16921160593
  • RubyAJ, KuttanG, BabuKD, RajasekharanKN, KuttanR. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Letters. 1995;94(1):79–83. doi:10.1016/0304-3835(95)03827-J7621448
  • KanaiM, ImaizumiA, OtsukaY, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol. 2012;69(1):65–70. doi:10.1007/s00280-011-1673-121603867
  • GarceaG, BerryDP, JonesDJ, et al. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamics consequences. Cancer Epidemiol Biomarkers Prev. 2005;14:120–125.15668484
  • SavjaniKT, GajjarAK, SavjaniJK Drug Solubility: importance and Enhancement Techniques. International Scholarly Research Notices/2012: Article ID 195727
  • DescampsM, WillartJF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev. 2016;100:51–66. doi:10.1016/j.addr.2016.01.01126826439
  • KamalakkannanV, PuratchikodyA, MasilamaniK, SenthilnathanB. Solubility enhancement of poorly soluble drugs by solid dispersion technique–A review. J Pharm Res. 2010;3:2314–2321.
  • HiguchiT, ConnorsKA. Phase-solubility techniques. Adv Anal Chem and Instrumen. 1965;4:117–212.
  • MohamedJMK, KavithaK, KarthikeyiniSC, NanthineeswariS. Soluble curcumin prepared using four different carriers by solid dispersions: phase solubility, molecular modelling and physicochemical characterization. Trop J Pharm Res. 2019;18(8):1581–1588.
  • VasoyaJM, DesaiHH, GumasteSG, et al. Development of Solid Dispersion by Hot Melt Extrusion Using Mixtures of Polyoxylglycerides With Polymers as Carriers for Increasing Dissolution Rate of a Poorly Soluble Drug Model. J Pharm Sci. 2019;108(2):888–896. doi:10.1016/j.xphs.2018.09.01930257196
  • PalanisamyM, KhanamJ. Solid dispersion of prednisolone: solid state characterization and improvement of dissolution profile. Drug Dev Ind Pharm. 2011;37(4):373–386. doi:10.3109/03639045.2010.51398420839923
  • DhanalekshmiUM, PooviG, KishoreN, ReddyPN. Reddy PN In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Int J Pharm. 2010;396(1–2):194–203. doi:10.1016/j.ijpharm.2010.06.02320600729
  • DiazDA, ColganST, LangerCS, BandiNT, LikarMD, Van AlstineL. Alstine LV Dissolution Similarity Requirements: how Similar or Dissimilar Are the Global Regulatory Expectations? The AAPS Journal. 2016;18(1):15–22. doi:10.1208/s12248-015-9830-926428517
  • LiuL, XuJ, ZhengH, et al. Inclusion complexes of laccaic acid A with β -cyclodextrin or its derivatives: phase solubility, solubilization, inclusion mode, and characterization. Dyes and Pigments. 2017;139:737–746. doi:10.1016/j.dyepig.2017.01.001
  • CameliaN, CorinaA, AngelaN, Crina-MariaM. Phase solubility studies of the inclusion complexes of repaglinide with ß-cyclodextrin and ß-cyclodextrin derivatives. FARMACIA. 2010;58:620–628.
  • ChaudharyH, KohliK, AminS, RatheeP, KumarV. Optimization and formulation design of gels of diclofenac and curcumin for transdermal drug delivery by Box-Behnken statistical design. J Pharm Sci. 2011;100(2):580–593. doi:10.1002/jps.2229220669331
  • KumarNS, GanapathyM, SharmilaS, ShankarM, VimalanM, PotheherIV. ZnO/Ni(OH)2 core-shell nanoparticles: synthesis, optical, electrical and photoacoustic property analysis. J Alloys Compd. 2017;703:624–632. doi:10.1016/j.jallcom.2017.01.323
  • DhananjayD, GurpreetK, AnandanR, LoganathanG, Trinuclear Zinc-SchiffA. Base Complex: biocatalytic Activity and Cytotoxicity. Eur J Inorg Chem. 2014;1–10. doi:10.1002/ejic.201402158
  • RamachandranM, AnandanS, AshokkumarM. A luminescent on–off probe based calix[4]arene linked through triazole with ruthenium(ii) polypyridine complexes to sense copper(ii) and sulfide ions. New J Chem. 2019;43(25):9832–9842. doi:10.1039/C9NJ01632E
  • NagarajK, SubramanianA, SankaralingamA. Synthesis, CMC determination, and intercalative binding interaction with nucleic acid of a surfactant–copper (II) complex with modified phenanthroline ligand (dpq). J Biomol Struct Dyn. 2014. doi:10.1080/07391102.2013.879837
  • DasiramJD, GanesanR, KannanJ, KotteeswaranV, SivalingamN. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells. Biomed Pharmacother. 2017;86:373–380.28011386
  • MosieniakG, AdamowiczM, AlsterO, et al. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev. 2012;133:444–455.22613224
  • TuLC, ChouCK, ChenCY, ChangYT, ShenYC, YehSF. Characterization of the cytotoxic mechanism of Mana-Hox, an analog of manzamine alkaloids. Biochim Biophys Acta. 2004;1672:148–156.15182934
  • MoideenMMJ, KaruppaiyanK, KandhasamyR, SeetharamanS. Skimmed milk powder and pectin decorated solid lipid nanoparticle containing soluble curcumin used for the treatment of colorectal cancer. J Food Process Eng. 2019;43(3):1–15.
  • LeHT, JeonHM, LimCW, KimTW. Synthesis, Cytotoxicity, and phase-Solubility Study of Cyclodextrin Click Clusters. J Pharm Sci. 2014;103:3183–3189.25142120
  • BandariS, JadavS, EedaraBB, DhurkeR, JukantiR. Enhancement of Solubility and Dissolution Rate of Loratadine with Gelucire 50/13. J Pharm Innov. 2014;9:141–149.
  • IacovinoR, RapuanoF, CasoJV, et al. β-Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Pipemidic Acid: characterization and Bioactivity Evaluation. Int J Mol Sci. 2013;14(7):13022–13041.23799358
  • BodrattiAM, AlexandridisP. Formulation of Poloxamers for Drug Delivery. J Funct Biomater. 2018;9:11.
  • CesareoJ, SantosaJL, Perez-MartínezaJ, Gomez-PantojaME, MoyanoabJR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J Drug Deliv Sci Tec. 2017;42:261–272.
  • UzquedaM, MartınC, ZornozaA, SanchezM, OharrizMCM, VelazI. Characterization of complexes between Naftifine and cyclodextrins in solution and in the slid state. Pharm Res. 2006;23:980–988.16715388
  • BanE, ParkM, JeongS, et al. Poloxamer-Based Thermoreversible Gel for Topical Delivery of Emodin: influence of P407 and P188 on Solubility of Emodin and Its Application in Cellular Activity Screening. Molecules. 2017;22:1–10.
  • MohanrajP, JasminaK. Effect of physiochemical variables on phase solubility and dissolution behavior of indomethacin solid dispersion system. J Pharm Invest. 2013;44:147–162.
  • KurniawansyahF, QuachieL, MammucariLR, FosterNR. Improving the dissolution properties of curcumin using dense gas antisolvent technology. Int J Pharm. 2017;521:239–248.28185959
  • ZajcN, ObrezaA, BeleM, SrciS. ‘Physical properties and dissolution behavior of nifedipine/mannitol solid dispersions prepared by hot melt method’. Int J Pharm. 2005;291:pp. 51–58.
  • JangOJ, KimST, LeeK, OhE. Improved bioavailability and antiasthmatic efficacy of poorly soluble curcumin solid dispersion granules obtained using fluid bed granulation. Bio-Med Mat Eng. 2014;24:413–429.
  • AvinashBG, HarishSK, SharadchandraDJ, DiwakarRJ, MariamSD, PurnimaDA. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its insilico molecular modeling studies. J Drug Deliv Sci Tec. 2015;29:226–237.
  • FiniA, MoyanoJR, GineJM, Perez-MartinezJI, RabascoAM. ‘Diclofenac salts, II. Solid dispersions in PEG6000 and Gelucire 50/13ʹ. Eur J Pharm Biopharm. 2005;60:99–111.15848062
  • ChenZ, XiaY, LiaoS, et al. Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem. 2014;155:81–86.24594157
  • MasekA, ChrzescijanskaE, ZaborskiM. Characteristics of curcumin using cyclic voltammetry, UV–vis, fluorescence and thermogravimetric analysis. Electrochim Acta. 2013;107:441–447.
  • PopatA, KarmakarS, JambhrunkarS, XuC, YuC. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Coll Surf B. 2014;117:520–527.
  • SadeghiF, AshoftehM, HomayouniA, AbbaspourM, NokhodchiA, GarekaniHA. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement. Coll Surf B Biointer. 2016;147:258–264.
  • LiJ, LeeIW, ShinGH, ChenX, ParkHJ. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm. 2015;94:322–332.26073546
  • DhrubaJS, AnupamaS, PrithusayakM, AnilK, ParmarBS. Synthesis and Characterization of Poly (CMC-g-cl-PAam/Zeolite) SuperabsorbenComposites for Controlled Delivery of Zinc Micronutrient: swelling and Release Behavior. Polym Plast Technol Eng. 2015;54(4):357–367.
  • IgePP, KawadeR, BelgamwarV, et al. Development of pellets of nifedipine using HPMC K15 M and j-carrageenan as mucoadhesive sustained delivery system and in vitro evaluation. Iran Polym J. 2013;22:911–921.
  • XuS, ChenJ, WangB, YangY. Sustainable and hydrolysis-free dyeing process for polylactic acid using nonaqueous medium. ACS Sustain Chem Eng. 2015;l.3:1039–1046.
  • GangurdeAB, KundaikarHS, JaveerSD, JaiswarDR, DeganiMS, AminPD. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its In-silico molecular modeling studies. J Drug Deliv Sci Tec. 2015;29:226–237.
  • SuSN, NieHL, ZhuLM, ChenTX. Optimization of adsorption conditions of papain on dye affinity membrane using response surface methodology. Bioresour Technol. 2009;100:2336–2340.19128959
  • BaigMS, AhadA, AslamM, ImamSS, AliMAA. Application of Box- Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol. 2016;85:265–270.
  • ChaudharyH, RohillaA, RatheeP, KumarV. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers. Int J Biol Macromol. 2013;55:246–253.23376559
  • ZhaoB, ZhangJ, GuoXX, WangJ. Microwave-assisted extraction, chemical characterization of polysaccharides from Liliumdavidii var. unicolor Salisb and its Antioxidant activities evaluation. Food Hydrocoll. 2013;31:346–356.
  • PoojaD, PanyaramS, KulhariH, ReddyB, RachamallaSS, SistlaR. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol. 2015;80:48–56.26093321
  • NayakAK, PalD. Formulation, optimization and evaluation of jackfruit seed starch alginate mucoadhesive beads of metformin HCl. Int J Biol Macromol. 2013;59:264–272.23628586
  • SunJ, BiC, ChanHM, SunS, ZhangO, ZhengY. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Coll Surf B Biointer. 2013;111:367–375.
  • AbelDAS, SarahKB. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: considerations for the choice of cell viability assay. Food Chem. 2018;241:70–78.28958561
  • DhivyaR, PalaniandavarM, JaividhyaP, MathanG, AkbarshaMA, RiyasdeenA. In vitro antiproliferative and apoptosis-inducing properties of a mononuclear copper (II) complex with dppz ligand, in two genotypically different breast cancer cell lines. Biometals. 2015;28:929–943.26335033
  • VigneshG, SenthilkumarR, PaulP, PeriasamyVS, AkbarshaMA, ArunachalamS. Protein binding and biological evaluation of a polymer-anchored cobalt (III) complex containing a 2,2⁄ bipyridine ligand. RSC Adv. 2014;4:57483–57492.
  • OberhammerF, WilsonJW, DiveC, et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. THE EMBO J. 1993;12:3679–3684.8253089
  • KimKT, ZaikovaT, HutchisonJE, TanguayRL. Gold nanoparticles disrupt zebra fish eye development and pigmentation. Toxicol Sci. 2013;133:275–288.23549158
  • JiangS, ZhuR, HeX, et al. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int J Nanomed. 2017;12:167–178.