693
Views
27
CrossRef citations to date
0
Altmetric
Review

Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System

ORCID Icon, , , ORCID Icon, , , & ORCID Icon show all
Pages 4387-4405 | Published online: 21 Oct 2020

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • SiegelRL, MillerKD, Goding SauerA, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–164. doi:10.3322/caac.2160132133645
  • BrouwerNPM, BosACRK, LemmensVEPP, et al. An overview of 25 years of incidence, treatment and outcome of colorectal cancer patients. Int J Cancer. 2018;143(11):2758–2766. doi:10.1002/ijc.3178530095162
  • HaggarFA, BousheyRP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–197. doi:10.1055/s-0029-124245821037809
  • HäfnerMF, DebusJ. Radiotherapy for colorectal cancer: current standards and future perspectives. Visc Med. 2016;32(3):172–177. doi:10.1159/00044648627493944
  • AielloP, SharghiM, MansourkhaniSM, et al. Medicinal plants in the prevention and treatment of colon cancer. Oxid Med Cell Longev. 2019;2019:1–51. doi:10.1155/2019/2075614
  • ArnoldM, SierraMS, LaversanneM, SoerjomataramI, JemalA, BrayF. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–691. doi:10.1136/gutjnl-2015-31091226818619
  • MishraJ, DrummondJ, QuaziSH, et al. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol. 2013;86(3):232–250. doi:10.1016/j.critrevonc.2012.09.01423098684
  • BertelsenCA, NeuenschwanderAU, JansenJE, et al. Disease-free survival after complete mesocolic excision compared with conventional colon cancer surgery: a retrospective, population-based study. Lancet Oncol. 2015;16(2):161–168. doi:10.1016/S1470-2045(14)71168-425555421
  • AngeneteE. The importance of surgery in colorectal cancer treatment. Lancet Oncol. 2019;20(1):6–7. doi:10.1016/S1470-2045(18)30679-X30545751
  • GreenBL, MarshallHC, CollinsonF, et al. Long-term follow-up of the Medical Research Council CLASICC trial of conventional versus laparoscopically assisted resection in colorectal cancer. Br J Surg. 2013;100(1):75–82. doi:10.1002/bjs.894523132548
  • TerriereL, HolvoetJ, SchrijversD. Colorectal cancer. ESMO Handb Cancer Prev. 2008;1:127–135. doi:10.1038/nrdp.2015.65
  • TevisSE, KennedyGD. Postoperative complications: looking forward to a safer future. Clin Colon Rectal Surg. 2016;29(3):246–252. doi:10.1055/s-0036-158450127582650
  • ClimentM, MartinST. Complications of laparoscopic rectal cancer surgery. Mini-Invasive Surg. 2018;2018. doi:10.20517/2574-1225.2018.62.
  • Chiu-C-C, LinW-L, ShiH-Y, et al. Comparison of oncologic outcomes in laparoscopic versus open surgery for non-metastatic colorectal cancer: personal experience in a single institution. J Clin Med. 2019;8(6):875. doi:10.3390/jcm8060875
  • BedirliA, SalmanB, YukselO. Laparoscopic versus open surgery for colorectal cancer: a retrospective analysis of 163 patients in a single institution. Minim Invasive Surg. 2014;2014:1–6. doi:10.1155/2014/530314
  • SongX-J, LiuZ-L, ZengR, YeW, LiuC-W. A meta-analysis of laparoscopic surgery versus conventional open surgery in the treatment of colorectal cancer. Medicine (Baltimore). 2019;98(17):e15347. doi:10.1097/MD.000000000001534731027112
  • YangX-F, PanK. Diagnosis and management of acute complications in patients with colon cancer: bleeding, obstruction, and perforation. Chin J Cancer Res. 2014;26(3):331–340. doi:10.3978/j.issn.1000-9604.2014.06.1125035661
  • KirchhoffP, ClavienP-A, HahnloserD. Complications in colorectal surgery: risk factors and preventive strategies. Patient Saf Surg. 2010;4(1):5. doi:10.1186/1754-9493-4-520338045
  • BeraldoFB, YusufSAI, PalmaRT, KharmandayanS, GoncalvesJE, WaisbergJ. Urinary dysfunction after surgical treatment for rectal cancer. Arq Gastroenterol. 2015;52(3):180–185. doi:10.1590/S0004-2803201500030000526486283
  • CicchettiA, AvuzziB, PaloriniF, et al. Predicting late fecal incontinence risk after radiation therapy for prostate cancer: new insights from external independent validation. Int J Radiat Oncol. 2018;102(1):127–136. doi:10.1016/j.ijrobp.2018.05.013
  • BirgissonH, PåhlmanL, GunnarssonU, GlimeliusB. Late adverse effects of radiation therapy for rectal cancer – a systematic overview. Acta Oncol (Madr). 2007;46(4):504–516. doi:10.1080/02841860701348670
  • LangeMM, van de VeldeCJH. Urinary and sexual dysfunction after rectal cancer treatment. Nat Rev Urol. 2011;8(1):51–57. doi:10.1038/nrurol.2010.20621135876
  • LangeMM, den DulkM, BossemaER, et al. Risk factors for faecal incontinence after rectal cancer treatment. Br J Surg. 2007;94(10):1278–1284. doi:10.1002/bjs.581917579345
  • LangeMM, van de VeldeCJH. Faecal and urinary incontinence after multimodality treatment of rectal cancer. PLoS Med. 2008;5(10):e202. doi:10.1371/journal.pmed.005020218842066
  • KimJH, JenrowKA, BrownSL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–115. doi:10.3857/roj.2014.32.3.10325324981
  • MalamY, LoizidouM, SeifalianAM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–599. doi:10.1016/j.tips.2009.08.00419837467
  • BriggerI, DubernetC, CouvreurP. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;64(SUPPL):24–36. doi:10.1016/j.addr.2012.09.006
  • ZhangN, YinY, XuSJ, ChenWS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13(8):1551–1569. doi:10.3390/molecules1308155118794772
  • ChoK, WangX, NieS, ChenZ, ShinDM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–1316. doi:10.1158/1078-0432.CCR-07-144118316549
  • LuqmaniYA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14(SUPPL. 1):35–48. doi:10.1159/000086183
  • TummalaS, Satish KumarMN, PrakashA. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm J. 2015;23(3):308–314. doi:10.1016/j.jsps.2014.11.01026106279
  • ŠtabucB. Systemic therapy for colorectal cancer. Arch Oncol. 2003;11(4):255–263. doi:10.2298/AOO0304255S
  • Pérez-HerreroE, Fernández-MedardeA. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79. doi:10.1016/j.ejpb.2015.03.01825813885
  • EdwardsMS, ChaddaSD, ZhaoZ, BarberBL, SykesDP. A systematic review of treatment guidelines for metastatic colorectal cancer. Color Dis. 2012;14(2):31–47. doi:10.1111/j.1463-1318.2011.02765.x
  • TolJ, KoopmanM, CatsA, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009.
  • LeeG, JoungJY, ChoJH, SonCG, LeeN. Overcoming P-glycoprotein-mediated multidrug resistance in colorectal cancer: potential reversal agents among herbal medicines. Evid Based Compl Altern Med. 2018;2018:1–9. doi:10.1155/2018/3412074
  • BahramiB, Hojjat-FarsangiM, MohammadiH, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:(April):64–83. doi:10.1016/j.imlet.2017.07.015
  • JainA, JainSK, GaneshN, BarveJ, BegAM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine Nanotechnology, Biol Med. 2010;6(1):179–190. doi:10.1016/J.NANO.2009.03.002
  • RuoslahtiE, BhatiaSN, SailorMJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188(6):759–768. doi:10.1083/jcb.20091010420231381
  • DadwalA, BaldiA, Kumar NarangR. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup2):295–305. doi:10.1080/21691401.2018.145703930043651
  • SykesEA, ChenJ, ZhengG, ChanWCWW. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696–5706. doi:10.1021/nn500299p24821383
  • YuX, TraseI, RenM, DuvalK, GuoX, ChenZ. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016;2016:1–15. doi:10.1155/2016/1087250
  • GondaA, ZhaoN, ShahJV, et al. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One. 2019;4. doi:10.20900/mo.20190021
  • BazakR, HouriM, El AchyS, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2016;141(5):769–784. doi:10.1007/s00432-014-1767-3.Cancer
  • AmidonS, BrownJE, DaveVS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS Pharm Sci Tech. 2015;16(4):731–741. doi:10.1208/s12249-015-0350-9
  • PridgenEM, AlexisF, FarokhzadOC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol. 2014;12(10):1605–1610. doi:10.1016/j.cgh.2014.06.01824981782
  • HussanSD. A review on recent advances of enteric coating. IOSR J Pharm. 2012;2(6):05–11. doi:10.9790/3013-2610511
  • LeopoldCS. Coated dosage forms for colon-specific drug delivery. Pharm Sci Technol Today. 1999;2(5):197–204. doi:10.1016/S1461-5347(99)00151-010322382
  • HaoS, WangB, WangY, XuY. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation. J Nanoparticle Res. 2014;16(2):2204. doi:10.1007/s11051-013-2204-2
  • LiC, ZhouK, ChenD, et al. Solid lipid nanoparticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin. Int J Nanomedicine. 2019;14:1619–1631. doi:10.2147/IJN.S18347930880969
  • BhadraS, PrajapatiA, BhadraD. Development of pH sensitive polymeric nanoparticles of erythromycin stearate. J Pharm Bioallied Sci. 2016;8(2):135. doi:10.4103/0975-7406.17169127134466
  • Shahdadi SardoH, SaremnejadF, BagheriS, AkhgariA, Afrasiabi GarekaniH, SadeghiF. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm. 2019;558:367–379. doi:10.1016/j.ijpharm.2019.01.02230664993
  • KhotimchenkoM. Pectin polymers for colon-targeted antitumor drug delivery. Int J Biol Macromol. 2020;158:1110–1124. doi:10.1016/j.ijbiomac.2020.05.002
  • LangX, WangT, SunM, ChenX, LiuY. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int J Biol Macromol. 2020;154:433–445. doi:10.1016/j.ijbiomac.2020.03.14832194103
  • MarleyRA, NanH. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;96(2):105–114. doi:10.2169/naika.96.200
  • SiegelR, DeSantisC, JemalA. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–117. doi:10.3322/caac.2122024639052
  • NaeemM, AwanUA, SubhanF, et al. Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res. 2020;43(1):153–169. doi:10.1007/s12272-020-01219-031989477
  • DongY, ZhouJ, ZhuY, et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep. 2017;37(6):1–12. doi:10.1042/BSR20170945
  • MaY, YangY, WangF, et al. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One. 2013;8:1. doi:10.1371/journal.pone.0053916
  • TsilidisKK, KasimisJC, LopezDS, NtzaniEE, IoannidisJPA. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350(January):1–11. doi:10.1136/bmj.g7607
  • YouX, KangY, HollettG, et al. Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B. 2016;4(48):7779–7792. doi:10.1039/c6tb01925k32263770
  • JeonG, KoYT. Enhanced photodynamic therapy via photosensitizer-loaded nanoparticles for cancer treatment. J Pharm Investig. 2019;49(1). doi:10.1007/s40005-017-0363-3
  • WilczewskaAZ, NiemirowiczK, MarkiewiczKH, CarH. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. doi:10.1016/S1734-1140(12)70901-523238461
  • TiwariJN, TiwariRN, KimKS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57(4):724–803. doi:10.1016/j.pmatsci.2011.08.003
  • LiZ, TanS, LiS, ShenQ, WangK. Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep. 2017;38(2):611–624. doi:10.3892/or.2017.571828627697
  • BehzadiS, SerpooshanV, TaoW, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–4244. doi:10.1039/C6CS00636A28585944
  • ForoozandehP, AzizAA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13(1):339. doi:10.1186/s11671-018-2728-630361809
  • GouM. Promising application of nanotechnology in anticancer drug delivery. Drug Des Open Access. 2013;02:02. doi:10.4172/2169-0138.1000e117
  • KumarM, SharmaHK. Targeted nanotechnology for anticancer drug delivery: current issue and challenge. J Drug Deliv Ther. 2018;8(5):23–27. doi:10.22270/jddt.v8i5.1882
  • RodzinskiA, GuduruR, LiangP, et al. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci Rep. 2016;6(1):20867. doi:10.1038/srep2086726875783
  • SutradharKB, AminML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014;2014:1–12. doi:10.1155/2014/939378
  • XinY, YinM, ZhaoL, MengF, LuoL. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017;14(3):228. doi:10.20892/j.issn.2095-3941.2017.005228884040
  • SafhiMM, SivakumarSM, JabeenA, et al. Nanoparticle system for anticancer drug delivery: targeting to overcome multidrug resistance In: Grumezesc Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier; 2017:159–169. doi:10.1016/B978-0-323-52725-5.00008-3
  • LiuJ, HuangY, KumarA, et al. PH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710. doi:10.1016/j.biotechadv.2013.11.00924309541
  • KhatoonN, AlamH, KhanA, RazaK, SardarM. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci Rep. 2019;9(1):6848. doi:10.1038/s41598-019-43309-031048721
  • YangJ, ZhangH, ChenB. Application of nanoparticles to reverse multi-drug resistance in cancer. Nanotechnol Rev. 2016;5:5. doi:10.1515/ntrev-2016-0023
  • AlMatarM, MakkyEA, VarI, KoksalF. The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. Curr Drug Deliv. 2018;15(4):470–484. doi:10.2174/156720181566617120716350429219055
  • Chand DakalT, PalM. Nanotechnology for combating multi-drug resistance: a next generation antimicrobial therapy. J Drug Metab Toxicol. 2017;08:02. doi:10.4172/2157-7609-C1-009
  • KwonS-I, KyungK-H, ParkJ-Y, et al. Uniform anti-reflective films fabricated by layer-by-layer ultrasonic spray method. Colloids Surf A Physicochem Eng ASP. 2019;580((August):123785):123785. doi:10.1016/j.colsurfa.2019.123785
  • KotelevetsL, ChastreE, DesmaëleD, CouvreurP. Nanotechnologies for the treatment of colon cancer: from old drugs to new hope. Int J Pharm. 2016;514(1):24–40. doi:10.1016/j.ijpharm.2016.06.00527863668
  • BodmeierR, ChenH, PaeratakulO, NovelA. Approach to the oral delivery of micro- or nanoparticles. Pharm Res an off J Am Assoc Pharm Sci. 1989;6(5):413–417. doi:10.1023/A:1015987516796
  • FattalE, YoussefM, CouvreurP, AndremontA. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother. 1989;33(9):1540–1543. doi:10.1128/AAC.33.9.15402684009
  • CollnotEM, AliH, LehrCM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–246. doi:10.1016/j.jconrel.2012.01.02822306429
  • KoziolekM, GrimmM, BeckerD, et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the IntelliCap® system. J Pharm Sci. 2015;104(9):2855–2863. doi:10.1002/jps.2427425411065
  • ZhangS, LangerR, TraversoG. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today. 2019;176(1):82–96. doi:10.1016/j.physbeh.2017.03.040
  • Al-GousousJ, TsumeY, FuM, SalemII, LangguthP. Unpredictable performance of pH-dependent coatings accentuates the need for improved predictive in vitro test systems. Mol Pharm. 2017;14(12):4209–4219. doi:10.1021/acs.molpharmaceut.6b0087728199791
  • TranTT-D, TranPH-L, PhanML-N, VanTV. Colon specific delivery of fucoidan by incorporation of acidifier in enteric coating polymer. Int J Pharm Biosci Technol. 2013;9(13):14.
  • KhobragadeDS, Trambak PatilA, Shamrao KhobragadeD, et al. Development and evaluation of a hot-melt coating technique for enteric coating. Brazilian J Pharm Sci. 2012;48:1.
  • LiP, HaoJ, LiH, GuanH, LiC. Development of an enteric nanoparticle of marine sulfated polysaccharide propylene glycol alginate sodium sulfate for oral administration: formulation design, pharmacokinetics and efficacy. J Pharm Pharmacol. 2018;70(6):740–748. doi:10.1111/jphp.1290229532471
  • ThiyagarajanV, LinS-X, LeeC-H, WengC-F. A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery. Colloids Surfaces B Biointerfaces. 2016;141:120–131. doi:10.1016/j.colsurfb.2016.01.03826851441
  • SampathkumarK, RiyajanS, TanCK, DemokritouP, ChudapongseN, LooSCJ. Small-intestine-specific delivery of antidiabetic extracts from withania coagulans using polysaccharide-based enteric-coated nanoparticles. ACS Omega. 2019;4(7):12049–12057. doi:10.1021/acsomega.9b0082331460318
  • HeH, ZhangX, ShengY. Enteric-coated capsule containing β-galactosidase-loaded polylactic acid nanocapsules: enzyme stability and milk lactose hydrolysis under simulated gastrointestinal conditions. J Dairy Res. 2014;81(4):479–484. doi:10.1017/S002202991400049125263933
  • YuF, LiY, LiuCS, et al. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int J Pharm. 2015;484(1–2):181–191. doi:10.1016/j.ijpharm.2015.02.05525724135
  • FanW, XiaD, ZhuQ, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 2018;151:13–23. doi:10.1016/j.biomaterials.2017.10.02229055774
  • NguyenDN, PalangeticL, ClasenC, Van den MooterG. One-step production of darunavir solid dispersion nanoparticles coated with enteric polymers using electrospraying. J Pharm Pharmacol. 2016;68(5):625–633. doi:10.1111/jphp.1245926272245
  • SunH, LiuD, LiY, TangX, CongY. Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Int J Nanomedicine. 2014;9(1):1709–1716. doi:10.2147/IJN.S5609224729706
  • SladekS, McCartneyF, EskanderM, et al. An enteric-coated polyelectrolyte nanocomplex delivers insulin in rat intestinal instillations when combined with a permeation enhancer. Pharmaceutics. 2020;12(3):259. doi:10.3390/pharmaceutics12030259
  • XuB, ZhangW, ChenY, XuY, WangB, ZongL. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int J Biol Macromol. 2018;113:534–542. doi:10.1016/j.ijbiomac.2018.02.01629408613
  • ChaturvediK, GangulyK, KulkarniAR, et al. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine. 2015;10(10):1569–1583. doi:10.2217/nnm.15.3626008194
  • HeZ, LiuZ, TianH, et al. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale. 2018;10(7):3307–3319. doi:10.1039/C7NR08047F29384554
  • RayL, KarthikR, SrivastavaV, et al. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv Transl Res. 2020. doi:10.1007/s13346-020-00712-9
  • SinhmarGK, ShahNN, ChokshiNV, KhatriHN, PatelMM. Process, optimization, and characterization of budesonide-loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Drug Dev Ind Pharm. 2018;44(7):1078–1089. doi:10.1080/03639045.2018.143419429376433
  • KankalaRK, KuthatiY, SieH-W, et al. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice. J Colloid Interface Sci. 2015;458:217–228. doi:10.1016/j.jcis.2015.07.04426225492
  • TayelSA, El-NabarawiMA, TadrosMI, Abd-ElsalamWH. Duodenum-triggered delivery of pravastatin sodium: II. Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions. Drug Deliv. 2016;23(9):3266–3278. doi:10.3109/10717544.2016.117236727094305
  • JogR, UnachukwuK, BurgessDJ. Formulation design space for stable, pH sensitive crystalline nifedipine nanoparticles. Int J Pharm. 2016;514(1):81–92. doi:10.1016/j.ijpharm.2016.08.03927863686
  • SunL, LiuZ, TianH, et al. Scalable manufacturing of enteric encapsulation systems for site-specific oral insulin delivery. Biomacromolecules. 2019;20(1):528–538. doi:10.1021/acs.biomac.8b0153030537806
  • González-AlvarezM, CollC, Gonzalez-AlvarezI, et al. Gated mesoporous silica nanocarriers for a “two-step” targeted system to colonic tissue. Mol Pharm. 2017;14(12):4442–4453. doi:10.1021/acs.molpharmaceut.7b0056529064714
  • ShiY, LiK, TianB, et al. Oral delivery of human growth hormone: preparation, characterization, and pharmacokinetics. J Biomater Appl. 2017;31(6):851–858. doi:10.1177/088532821667434727742865
  • BendasER, AbdelbaryAA. Instantaneous enteric nano-encapsulation of omeprazole: pharmaceutical and pharmacological evaluation. Int J Pharm. 2014;468(1–2):97–104. doi:10.1016/j.ijpharm.2014.04.03024746414
  • WuZM, ZhouL, GuoXD, et al. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int J Pharm. 2012;425(1–2):1–8. doi:10.1016/j.ijpharm.2011.12.05522248666
  • MüllerC, PereraG, KönigV, Bernkop-SchnürchA. Development and in vivo evaluation of papain-functionalized nanoparticles. Eur J Pharm Biopharm. 2014;87(1):125–131. doi:10.1016/j.ejpb.2013.12.01224373995
  • SalvioniL, FiandraL, Del CurtoMD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res. 2016;110:122–130. doi:10.1016/j.phrs.2016.05.01627181095
  • LuoS, HaoJ, GaoY, LiuD, CaiQ, YangX. Pore size effect on adsorption and release of metoprolol tartrate in mesoporous silica: experimental and molecular simulation studies. Mater Sci Eng C. 2019;100:789–797. doi:10.1016/j.msec.2019.03.050
  • AlaiM, LinWJ. Novel lansoprazole-loaded nanoparticles for the treatment of gastric acid secretion-related ulcers: in vitro and in vivo pharmacokinetic pharmacodynamic evaluation. AAPS J. 2014;16(3):361–372. doi:10.1208/s12248-014-9564-024519468
  • NguyenDN, ClasenC, Van den MooterG. Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying. Eur J Pharm Biopharm. 2017;113:50–59. doi:10.1016/j.ejpb.2016.12.00227993734
  • KumarPV, MakiMAA, WeiYS, et al. Rabbit as an animal model for pharmacokinetics studies of enteric capsule contains recombinant human keratinocyte growth factor loaded chitosan nanoparticles. Curr Clin Pharmacol. 2019;14(2):132–140. doi:10.2174/157488471466618112010390730457053
  • EskandariS, VaraminiP, TothI. Formulation, characterization and permeability study of nano particles of lipo-endomorphin-1 for oral delivery. J Liposome Res. 2013;23(4):311–317. doi:10.3109/08982104.2013.80533923931529
  • ShahMK, MadanP, LinS. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration. Pharm Dev Technol. 2014;19(4):475–485. doi:10.3109/10837450.2013.79516923697916
  • NguyenH-N, WeyS-P, JuangJ-H, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials. 2011;32(10):2673–2682. doi:10.1016/j.biomaterials.2010.12.04421256586
  • ChenK, ChangHHR, ShalviriA, et al. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability. Eur J Pharm Biopharm. 2017;120:116–125. doi:10.1016/j.ejpb.2017.08.01428887098
  • RoyU, DingH, Pilakka KanthikeelS, et al. Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue. Int J Nanomedicine. 2015:5819. doi:10.2147/IJN.S68348.26425084
  • AnwerMK, Al-ShdefatR, EzzeldinE, AlshahraniSM, AlshetailiAS, IqbalM. Preparation, evaluation and bioavailability studies of eudragit coated PLGA nanoparticles for sustained release of eluxadoline for the treatment of irritable bowel syndrome. Front Pharmacol. 2017;8. doi:10.3389/fphar.2017.00844.
  • BiswasS, ChattopadhyayM, SenKK, SahaMK. Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr Polym. 2015;121:403–410. doi:10.1016/j.carbpol.2014.12.04425659715
  • ZhaoX, ShanC, ZuY, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int J Pharm. 2013;454(1):278–284. doi:10.1016/j.ijpharm.2013.06.05123830939
  • SuF-Y, LinK-J, SonajeK, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33(9):2801–2811. doi:10.1016/j.biomaterials.2011.12.03822243802
  • LiP, YangZ, WangY, et al. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul. 2015;32(1):40–45. doi:10.3109/02652048.2014.94494725198909
  • NassarT, Attili-QadriS, Harush-FrenkelO, et al. High plasma levels and effective lymphatic uptake of docetaxel in an orally available nanotransporter formulation. Cancer Res. 2011;71(8):3018–3028. doi:10.1158/0008-5472.CAN-10-311821363913
  • MahjubR, NajafabadiFK, DehkhodaeiN, et al. Eudragit L-100 capsules/aromatize and quaternerize chitosan for insulin nanoparticle oral delivery on toxic oxidative stress in rat liver and kidney. Pharm Nanotechnol. 2020;8. doi:10.2174/2211738508666200628033442
  • YusC, IrustaS, SebastianV, ArrueboM. Controlling particle size and release kinetics in the sustained delivery of oral antibiotics using pH-independent mucoadhesive polymers. Mol Pharm. 2020;acs.molpharmaceut.0c00408. doi:10.1021/acs.molpharmaceut.0c00408
  • ZhouK, YanY, ChenD, et al. Solid lipid nanoparticles for duodenum targeted oral delivery of tilmicosin. Pharmaceutics. 2020;12(8):731. doi:10.3390/pharmaceutics12080731
  • SahuKK, KauravM, PandeyRS. Chylomicron mimicking solid lipid nanoemulsions encapsulated enteric minicapsules targeted to colon for immunization against hepatitis B. Int Immunopharmacol. 2019;66:317–329. doi:10.1016/j.intimp.2018.11.04130503974
  • TummalaS, KuppusamyG, Satish KumarMN, PraveenTK, WadhwaniA. 5-Fluorouracil enteric-coated nanoparticles for improved apoptotic activity and therapeutic index in treating colorectal cancer. Drug Deliv. 2016;23(8):2902–2910. doi:10.3109/10717544.2015.111602626634385
  • HosnyKM. Alendronate sodium as enteric coated solid lipid nanoparticles; preparation, optimization, and in vivo evaluation to enhance its oral bioavailability. Santos HA, ed. PLoS One. 2016;11(5):e0154926. doi:10.1371/journal.pone.015492627148747
  • ValatMT. Mechanistic study of NVP-CGM097: A potent, selective and species specific inhibitor of p53-Mdm2. Drug Des Open Access. 2015;04:02. doi:10.4172/2169-0138.S1.008
  • Amini-FazlMS, MohammadiR, KheiriK. 5‑Fluorouracil loaded chitosan/polyacrylic acid/Fe 3 O 4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int J Biol Macromol. 2019;132:506–513. doi:10.1016/j.ijbiomac.2019.04.00530951773
  • ChoiJS, CaoJ, NaeemM, et al. Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition. Colloids Surfaces B Biointerfaces. 2014;122:545–551. doi:10.1016/j.colsurfb.2014.07.03025108477
  • ChoiYH, HanHK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48(1):43–60. doi:10.1007/s40005-017-0370-4
  • BanerjeeA, QiJ, GogoiR, WongJ, MitragotriS. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016;238:176–185. doi:10.1016/j.jconrel.2016.07.05127480450
  • XiaoB, SiX, HanM, ViennoisE, ZhangM, MerlinD. Codelivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J Mater Chem B. 2015;3:7724–7733. doi:10.1039/c5tb01245g26617985
  • AkincA, BattagliaG. Exploiting endocytosis for nanomedicines. Cold Spring Harb Perspect Biol. 2013;5(11):a016980–a016980. doi:10.1101/cshperspect.a01698024186069
  • ChenS, GuoF, DengT, et al. Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS Pharm Sci Tech. 2017;18(4):1277–1287. doi:10.1208/s12249-016-0594-z
  • KarnPR, VanićZ, PepićI, Škalko-BasnetN. Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Dev Ind Pharm. 2011;37(4):482–488. doi:10.3109/03639045.2010.52342520961263
  • NikamV, KotadeK, GawareV, et al. Eudragit a versatile polymer: a review. Pharmacologyonline. 2011;1:152–164.
  • SunL, ChenY, ZhouY, et al. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharm Sci. 2017;12(5):418–423. doi:10.1016/J.AJPS.2017.04.00232104354
  • KhatikR, MishraR, VermaA, et al. Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo. J Nanoparticle Res. 2013;15:9. doi:10.1007/s11051-013-1893-x
  • LiCF, LiYC, ChenLB, WangY, SunLB. Doxorubicin-loaded Eudragit-coated chitosan nanoparticles in the treatment of colon cancers. J Nanosci Nanotechnol. 2016;16(7):6773–6780. doi:10.1166/jnn.2016.11374
  • JainA, JainS, JainR, KohliDV. Coated chitosan nanoparticles encapsulating caspase 3 activator for effective treatment of colorectral cancer. Drug Deliv Transl Res. 2015;5(6):596–610. doi:10.1007/s13346-015-0255-x26334865
  • SubudhiMB, JainA, JainA, et al. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials (Basel). 2015;8(3):832–849. doi:10.3390/ma803083228787974
  • MaY, FuchsAV, BoaseNRB, RolfeBE, CoombesAGA, ThurechtKJ. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: evaluation of their potential for colon-specific delivery. Eur J Pharm Biopharm. 2015;94:393–403. doi:10.1016/j.ejpb.2015.06.01426117186
  • KanthamneniN, ChaudharyA, WangJ, PhabhuS. Nanoparticulate delivery of novel drug combination regimens for the chemoprevention of colon cancer. Int J Oncol. 2010;37:177–185. doi:10.3892/ijo20514409
  • MaY, CoombesAGA. Designing colon-specific delivery systems for anticancer drug-loaded nanoparticles: an evaluation of alginate carriers. J Biomed Mater Res. 2014;102(9):3167–3176. doi:10.1002/jbm.a.34988
  • RajpootK, JainSK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. Int J Biol Macromol. 2020;151:830–844. doi:10.1016/j.ijbiomac.2020.02.13232061847
  • CerchiaraT, BigucciF, CoraceG, ZecchiV, LuppiB. Eudragit-coated albumin nanospheres carrying inclusion complexes for oral administration of indomethacin. J Incl Phenom Macrocycl Chem. 2011;71(1–2):129–136. doi:10.1007/s10847-010-9916-z
  • JainA, JainSK. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology. Artif Cells Nanomedicine Biotechnol. 2016;44(8):1917–1926. doi:10.3109/21691401.2015.1111236
  • ThakralS, ThakralNK, MajumdarDK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131–149. doi:10.1517/17425247.2013.73696223102011
  • NassarT, Attili-QadriS, Harush-FrenkelO, et al. High plasma levels and effective lymphatic uptake of docetaxel in an orally available nanotransporter formulation. Cancer Res. 2011;71(8):3018–3028. doi:10.1158/0008-5472.CAN-10-311821363913
  • SinhaVR, KumriaR. Coating polymers for colon specific drug delivery: a comparative in vitro evaluation. Acta Pharm. 2003;53(1):41–47.14769251
  • ThakralS, ThakralNK, MajumdarDK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131–149. doi:10.1517/17425247.2013.73696223102011
  • MohammedMA, SyedaJTM, WasanKM, WasanEK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9:4. doi:10.3390/pharmaceutics9040053
  • SonajeK, ChenYJ, ChenHL, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31(12):3384–3394. doi:10.1016/j.biomaterials.2010.01.04220149435
  • AlaiMS, LinWJ, PingaleSS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23(3):351–358. doi:10.1016/j.jfda.2015.01.00728911691
  • ThiyagarajanV, LinSX, LeeCH, WengCF. A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery. Colloids Surfaces B Biointerfaces. 2016;141:120–131. doi:10.1016/j.colsurfb.2016.01.03826851441