173
Views
37
CrossRef citations to date
0
Altmetric
Original Research

Wogonin Ameliorates Renal Inflammation and Fibrosis by Inhibiting NF-κB and TGF-β1/Smad3 Signaling Pathways in Diabetic Nephropathy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 4135-4148 | Published online: 08 Oct 2020

References

  • ChawlaA, ChawlaR, JaggiS. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546. doi:10.4103/2230-8210.18348027366724
  • GheithO, FaroukN, NampooryN, HalimMA, Al-OtaibiT. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol. 2016;5:49.28197499
  • MorenoJA, Gomez-GuerreroC, MasS, et al. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs. 2018;27:917–930.doi:10.1080/13543784.2018.1538352
  • GarridoW, JaraC, TorresA, et al. Blockade of the adenosine A3 receptor attenuates caspase 1 activation in renal tubule epithelial cells and decreases interleukins IL-1β and IL-18 in diabetic rats. Int J Mol Sci. 2019;20(18):4531. doi:10.3390/ijms20184531
  • NiewczasMA, FicocielloLH, JohnsonAC, et al. Serum concentrations of markers of TNF alpha and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol. 2009;4(1):62–70. doi:10.2215/CJN.0301060819073786
  • WadaT, FuruichiK, SakaiN, et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000;58(4):1492–1499. doi:10.1046/j.1523-1755.2000.00311.x11012884
  • TanifujiC, SuzukiY, GeotWM, et al. Reactive oxygen species-mediated signaling pathways in angiotensin II-induced MCP-1 expression of proximal tubular cells. Antioxid Redox Signal. 2005;7(9–10):1261–1268.doi:10.1089/ars.2005.7.126116115031
  • CooperME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia. 2001;44(11):1957–1972.doi:10.1007/s00125010000011719827
  • LuoC, YangH, TangC, et al. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol. 2015;28(1):744–750. doi:10.1016/j.intimp.2015.07.01826263168
  • LiuY. Renal fibrosis, new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–217. doi:10.1038/sj.ki.500005416408108
  • WolfG. New insights into the pathophysiology of diabetic nephropathy: from hemodynamics to molecular pathology. Eur J Clin Investig. 2004;34:785–796.doi:10.1111/j.1365-2362.2004.01429.x15606719
  • MasonRM, WahabNA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1358–1373. doi:10.1097/01.ASN.0000065640.77499.D712707406
  • SchlöndorffD, BanasB. The mesangial cell revisited: no cell is an island. J Am Soc Nephrol. 2009;20(6):1179–1187. doi:10.1681/ASN.200805054919470685
  • SchenaFP, GesualdoL. Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol. 2005;16(Suppl 1):S30. doi:10.1681/ASN.200411097015938030
  • AbboundHE. Mesangial cell biology. Exp Cell Res. 2012;318:979–985. doi:10.1016/j.yexcr.2012.02.02522414873
  • LoefflerI, WolfG. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015;4(4):631–652. doi:10.3390/cells404063126473930
  • TangPM, ZhangYY, MakTS, TangPC, HuangXR, LanHY. Transforming growth factor-β signaling in renal fibrosis: from Smads to non-coding RNAs. J Physiol. 2018;596(16):3493–3503.doi:10.1113/JP27449229781524
  • BenigniA, ZojaC, CampanaM, et al. Beneficial effect of TGF-β antagonism in treating diabetic nephropathy depends on when treatment is started. Nephron Exp Nephrol. 2006;104:e158.doi:10.1159/00009496716902320
  • GagliardiniE, BenigniA. Role of anti-TGF-β antibodies in the treatment of renal injury. Cytokine Growth Factor Rev. 2006;17(1–2):89–96. doi:10.1016/j.cytogfr.2005.09.00516257566
  • XuBH, ShengJ, YouYK, et al. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism. 2020;103:154013. doi:10.1016/j.metabol.2019.15401331734275
  • GuoMF, DaiYJ, GaoJR, ChenPJ. Uncovering the mechanism of astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology. J Diabetes Res. 2020;2020:5947304. doi:10.1155/2020/594730432215271
  • KuSK, BaeJS. Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo. BMB Rep. 2015;48(9):519–524. doi:10.5483/BMBRep.2015.48.9.01725739393
  • KhanS, ZhangD, ZhangY, LiM, WangC. Wogonin attenuates diabetic cardiomyopathy through its anti-inflammatory and anti-oxidative properties. Mol Cell Endocrinol. 2016;428(C):101–108. doi:10.1016/j.mce.2016.03.02527013352
  • BakEJ, KimJ, ChoiYH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr. 2014;33(1):156–163. doi:10.1016/j.clnu.2013.03.01323623334
  • MengXM, RenGL, GaoL, et al. Anti-fibrotic effect of wogonin in renal tubular epithelial cells via Smad3-dependent mechanisms. Eur J Pharmacol. 2016;789:134–143. doi:10.1016/j.ejphar.2016.07.01427397431
  • MengXM, LiHD, WuWF, et al. Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis. Lab Invest. 2018;98:79–94. doi:10.1038/labinvest.2017.11529200200
  • LiuXQ, JinJ, LiZ, et al. Rutaecarpine derivative Cpd-6c alleviates acute kidney injury by targeting PDE4B, a key enzyme mediating inflammation in cisplatin nephropathy. Biochem Pharmacol. 2020;180:114132. doi:10.1016/j.bcp.2020.11413232622666
  • Papadopoulou-MarketouN, Kanaka-GantenbeinC, MarketosN, ChrousosGP, PapassotiriouI. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci. 2017;54(5):326–342. doi:10.1080/10408363.2017.137768228956668
  • CampbellRC, RuggenentiP, RemuzziG. Proteinuria in diabetic nephropathy: treatment and evolution. Curr Diab Rep. 2003;3(6):497–504.doi:10.1007/s11892-003-0014-014611747
  • KhanS, KamalMA. Can wogonin be used in controlling diabetic cardiomyopathy? Curr Pharm Des. 2019;25(19):2171–2177. doi:10.2174/138161282566619070817310831298148
  • RiveroA, MoraC, MurosM, GarcíaJ, HerreraH, Navarro-GonzálezJF. Pathogenic perspectives for the role of inflammation in diabetic nephropathy. Clin Sci (Lond). 2009;116:479–492.doi:10.1042/CS2008039419200057
  • SedorJR, KonieczkowskiM, HuangS, et al. Cytokines, mesangial cell activation and glomerular injury. Kidney Int Suppl. 1993;39:S65.8468928
  • NavarroJF, Mora-FernándezC. The role of TNF-α in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 2006;17(6):441–450. doi:10.1016/j.cytogfr.2006.09.01117113815
  • Navarro-GonzálezJF, Mora-FernándezC, de FuentesMM, García-PérezJ. Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7(6):327–340. doi:10.1038/nrneph.2011.5121537349
  • MezzanoS, ArosC, DroguettA, et al. NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant. 2004;19(10):2505–2512.doi:10.1093/ndt/gfh20715280531
  • StarkeyJM, HaidacherSJ, LeJeuneWS, et al. Diabetes-induced activation of canonical and noncanonical nuclear factor-κB pathways in renal cortex. Diabetes. 2006;55(5):1252–1259. doi:10.2337/db05-155416644679
  • SchmidH, BoucherotA, YasudaY, et al. European Renal cDNA Bank (ERCB) Consortium. Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy. Diabetes. 2006;55(11):2993–3003. doi:10.2337/db06-047717065335
  • KolatiSR, KasalaER, BodduluruLN, et al. BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway. Environ Toxicol Pharmacol. 2015;39(2):690–699. doi:10.1016/j.etap.2015.01.01925704036
  • LiXQ, TianW, LiuXX, et al. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage. Sci Rep. 2016;6:26854.doi:10.1038/srep2685427229751
  • VoelkerJ, BergPH, SheetzM, et al. Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol. 2017;28:953–962.doi:10.1681/ASN.201511123027647855
  • LiJ, QuX, YaoJ, et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:2612–2624.20682692
  • KimTW, KimYJ, SeoCS, et al. Elsholtzia ciliata (Thunb.) Hylander attenuates renal inflammation and interstitial fibrosis via regulation of TGF-ß and Smad3 expression on unilateral ureteral obstruction rat model. Phytomedicine. 2016;23(4):331–339. doi:10.1016/j.phymed.2016.01.01327002403
  • WangY, NieM, LuY, et al. Fucoidan exerts protective effects against diabetic nephropathy related to spontaneous diabetes through the NF-κB signaling pathway in vivo and in vitro. Int J Mol Med. 2015;35:1067–1073.doi:10.3892/ijmm.2015.209525672488
  • ZhengHX, QiSS, HeJ, et al. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor β1/Smad expression. J Agric Food Chem. 2020;68(15):4399–4410. doi:10.1021/acs.jafc.0c0068032192334